mesa/ast_function.cpp

740 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "glsl_symbol_table.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
static unsigned
process_parameters(exec_list *instructions, exec_list *actual_parameters,
exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
unsigned count = 0;
foreach_list (n, parameters) {
ast_node *const ast = exec_node_data(ast_node, n, link);
ir_rvalue *result = ast->hir(instructions, state);
ir_constant *const constant = result->constant_expression_value();
if (constant != NULL)
result = constant;
actual_parameters->push_tail(result);
count++;
}
return count;
}
static ir_rvalue *
process_call(exec_list *instructions, ir_function *f,
YYLTYPE *loc, exec_list *actual_parameters,
struct _mesa_glsl_parse_state *state)
{
const ir_function_signature *sig =
f->matching_signature(actual_parameters);
/* The instructions param will be used when the FINISHMEs below are done */
(void) instructions;
if (sig != NULL) {
/* Verify that 'out' and 'inout' actual parameters are lvalues. This
* isn't done in ir_function::matching_signature because that function
* cannot generate the necessary diagnostics.
*/
exec_list_iterator actual_iter = actual_parameters->iterator();
exec_list_iterator formal_iter = sig->parameters.iterator();
while (actual_iter.has_next()) {
ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
ir_variable *formal = (ir_variable *) formal_iter.get();
assert(actual != NULL);
assert(formal != NULL);
if ((formal->mode == ir_var_out)
|| (formal->mode == ir_var_inout)) {
if (! actual->is_lvalue()) {
/* FINISHME: Log a better diagnostic here. There is no way
* FINISHME: to tell the user which parameter is invalid.
*/
_mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
(formal->mode == ir_var_out) ? "out" : "inout");
}
}
actual_iter.next();
formal_iter.next();
}
/* FINISHME: The list of actual parameters needs to be modified to
* FINISHME: include any necessary conversions.
*/
return new ir_call(sig, actual_parameters);
} else {
/* FINISHME: Log a better error message here. G++ will show the types
* FINISHME: of the actual parameters and the set of candidate
* FINISHME: functions. A different error should also be logged when
* FINISHME: multiple functions match.
*/
_mesa_glsl_error(loc, state, "no matching function for call to `%s'",
f->name);
return ir_call::get_error_instruction();
}
}
static ir_rvalue *
match_function_by_name(exec_list *instructions, const char *name,
YYLTYPE *loc, exec_list *actual_parameters,
struct _mesa_glsl_parse_state *state)
{
ir_function *f = state->symbols->get_function(name);
if (f == NULL) {
_mesa_glsl_error(loc, state, "function `%s' undeclared", name);
return ir_call::get_error_instruction();
}
/* Once we've determined that the function being called might exist, try
* to find an overload of the function that matches the parameters.
*/
return process_call(instructions, f, loc, actual_parameters, state);
}
/**
* Perform automatic type conversion of constructor parameters
*/
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type)
{
const unsigned a = desired_type->base_type;
const unsigned b = src->type->base_type;
ir_expression *result = NULL;
if (src->type->is_error())
return src;
assert(a <= GLSL_TYPE_BOOL);
assert(b <= GLSL_TYPE_BOOL);
if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
return src;
switch (a) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (b == GLSL_TYPE_FLOAT)
result = new ir_expression(ir_unop_f2i, desired_type, src, NULL);
else {
assert(b == GLSL_TYPE_BOOL);
result = new ir_expression(ir_unop_b2i, desired_type, src, NULL);
}
break;
case GLSL_TYPE_FLOAT:
switch (b) {
case GLSL_TYPE_UINT:
result = new ir_expression(ir_unop_u2f, desired_type, src, NULL);
break;
case GLSL_TYPE_INT:
result = new ir_expression(ir_unop_i2f, desired_type, src, NULL);
break;
case GLSL_TYPE_BOOL:
result = new ir_expression(ir_unop_b2f, desired_type, src, NULL);
break;
}
break;
case GLSL_TYPE_BOOL: {
ir_constant *zero = NULL;
switch (b) {
case GLSL_TYPE_UINT: zero = new ir_constant(unsigned(0)); break;
case GLSL_TYPE_INT: zero = new ir_constant(int(0)); break;
case GLSL_TYPE_FLOAT: zero = new ir_constant(0.0f); break;
}
result = new ir_expression(ir_binop_nequal, desired_type, src, zero);
}
}
assert(result != NULL);
ir_constant *const constant = result->constant_expression_value();
return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
}
/**
* Dereference a specific component from a scalar, vector, or matrix
*/
static ir_rvalue *
dereference_component(ir_rvalue *src, unsigned component)
{
assert(component < src->type->components());
/* If the source is a constant, just create a new constant instead of a
* dereference of the existing constant.
*/
ir_constant *constant = src->as_constant();
if (constant)
return new ir_constant(constant, component);
if (src->type->is_scalar()) {
return src;
} else if (src->type->is_vector()) {
return new ir_swizzle(src, component, 0, 0, 0, 1);
} else {
assert(src->type->is_matrix());
/* Dereference a row of the matrix, then call this function again to get
* a specific element from that row.
*/
const int c = component / src->type->column_type()->vector_elements;
const int r = component % src->type->column_type()->vector_elements;
ir_constant *const col_index = new ir_constant(c);
ir_dereference *const col = new ir_dereference_array(src, col_index);
col->type = src->type->column_type();
return dereference_component(col, r);
}
assert(!"Should not get here.");
return NULL;
}
2010-04-01 00:48:48 +01:00
static ir_rvalue *
process_array_constructor(exec_list *instructions,
const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
2010-04-01 00:48:48 +01:00
struct _mesa_glsl_parse_state *state)
{
/* Array constructors come in two forms: sized and unsized. Sized array
* constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
* variables. In this case the number of parameters must exactly match the
* specified size of the array.
*
* Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
* are vec4 variables. In this case the size of the array being constructed
* is determined by the number of parameters.
*
* From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
*
* "There must be exactly the same number of arguments as the size of
* the array being constructed. If no size is present in the
* constructor, then the array is explicitly sized to the number of
* arguments provided. The arguments are assigned in order, starting at
* element 0, to the elements of the constructed array. Each argument
* must be the same type as the element type of the array, or be a type
* that can be converted to the element type of the array according to
* Section 4.1.10 "Implicit Conversions.""
*/
exec_list actual_parameters;
const unsigned parameter_count =
process_parameters(instructions, &actual_parameters, parameters, state);
if ((parameter_count == 0)
|| ((constructor_type->length != 0)
&& (constructor_type->length != parameter_count))) {
const unsigned min_param = (constructor_type->length == 0)
? 1 : constructor_type->length;
_mesa_glsl_error(loc, state, "array constructor must have %s %u "
"parameter%s",
(constructor_type->length != 0) ? "at least" : "exactly",
min_param, (min_param <= 1) ? "" : "s");
return ir_call::get_error_instruction();
}
if (constructor_type->length == 0) {
constructor_type =
glsl_type::get_array_instance(constructor_type->element_type(),
2010-04-01 00:48:48 +01:00
parameter_count);
assert(constructor_type != NULL);
assert(constructor_type->length == parameter_count);
}
ir_function *f = state->symbols->get_function(constructor_type->name);
/* If the constructor for this type of array does not exist, generate the
* prototype and add it to the symbol table.
2010-04-01 00:48:48 +01:00
*/
if (f == NULL) {
f = constructor_type->generate_constructor(state->symbols);
2010-04-01 00:48:48 +01:00
}
ir_rvalue *const r =
process_call(instructions, f, loc, &actual_parameters, state);
assert(r != NULL);
assert(r->type->is_error() || (r->type == constructor_type));
return r;
}
/**
* Try to convert a record constructor to a constant expression
*/
static ir_constant *
constant_record_constructor(const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
bool all_parameters_are_constant = true;
exec_node *node = parameters->head;
for (unsigned i = 0; i < constructor_type->length; i++) {
ir_instruction *ir = (ir_instruction *) node;
if (node->is_tail_sentinal()) {
_mesa_glsl_error(loc, state,
"insufficient parameters to constructor for `%s'",
constructor_type->name);
return NULL;
}
if (ir->type != constructor_type->fields.structure[i].type) {
_mesa_glsl_error(loc, state,
"parameter type mismatch in constructor for `%s' "
" (%s vs %s)",
constructor_type->name,
ir->type->name,
constructor_type->fields.structure[i].type->name);
return NULL;
}
if (ir->as_constant() == NULL)
all_parameters_are_constant = false;
node = node->next;
}
if (!all_parameters_are_constant)
return NULL;
return new ir_constant(constructor_type, parameters);
}
/**
* Generate data for a constant matrix constructor w/a single scalar parameter
*
* Matrix constructors in GLSL can be passed a single scalar of the
* approriate type. In these cases, the resulting matrix is the identity
* matrix multipled by the specified scalar. This function generates data for
* that matrix.
*
* \param type Type of the desired matrix.
* \param initializer Scalar value used to initialize the matrix diagonal.
* \param data Location to store the resulting matrix.
*/
void
generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
ir_constant_data *data)
{
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < type->components(); i++)
data->u[i] = 0;
for (unsigned i = 0; i < type->matrix_columns; i++) {
/* The array offset of the ith row and column of the matrix.
*/
const unsigned idx = (i * type->vector_elements) + i;
data->u[idx] = initializer->value.u[0];
}
break;
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < type->components(); i++)
data->f[i] = 0;
for (unsigned i = 0; i < type->matrix_columns; i++) {
/* The array offset of the ith row and column of the matrix.
*/
const unsigned idx = (i * type->vector_elements) + i;
data->f[idx] = initializer->value.f[0];
}
break;
default:
assert(!"Should not get here.");
break;
}
}
/**
* Generate data for a constant vector constructor w/a single scalar parameter
*
* Vector constructors in GLSL can be passed a single scalar of the
* approriate type. In these cases, the resulting vector contains the specified
* value in all components. This function generates data for that vector.
*
* \param type Type of the desired vector.
* \param initializer Scalar value used to initialize the vector.
* \param data Location to store the resulting vector data.
*/
void
generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
ir_constant_data *data)
{
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < type->components(); i++)
data->u[i] = initializer->value.u[0];
break;
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < type->components(); i++)
data->f[i] = initializer->value.f[0];
break;
case GLSL_TYPE_BOOL:
for (unsigned i = 0; i < type->components(); i++)
data->b[i] = initializer->value.b[0];
break;
default:
assert(!"Should not get here.");
break;
}
}
ir_rvalue *
ast_function_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* There are three sorts of function calls.
*
* 1. contstructors - The first subexpression is an ast_type_specifier.
* 2. methods - Only the .length() method of array types.
* 3. functions - Calls to regular old functions.
*
* Method calls are actually detected when the ast_field_selection
* expression is handled.
*/
if (is_constructor()) {
const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
YYLTYPE loc = type->get_location();
const char *name;
const glsl_type *const constructor_type = type->glsl_type(& name, state);
/* Constructors for samplers are illegal.
*/
if (constructor_type->is_sampler()) {
_mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
constructor_type->name);
return ir_call::get_error_instruction();
}
if (constructor_type->is_array()) {
if (state->language_version <= 110) {
_mesa_glsl_error(& loc, state,
"array constructors forbidden in GLSL 1.10");
return ir_call::get_error_instruction();
}
2010-04-01 00:48:48 +01:00
return process_array_constructor(instructions, constructor_type,
& loc, &this->expressions, state);
}
/* There are two kinds of constructor call. Constructors for built-in
* language types, such as mat4 and vec2, are free form. The only
* requirement is that the parameters must provide enough values of the
* correct scalar type. Constructors for arrays and structures must
* have the exact number of parameters with matching types in the
* correct order. These constructors follow essentially the same type
* matching rules as functions.
*/
if (constructor_type->is_numeric() || constructor_type->is_boolean()) {
/* Constructing a numeric type has a couple steps. First all values
* passed to the constructor are broken into individual parameters
* and type converted to the base type of the thing being constructed.
*
* At that point we have some number of values that match the base
* type of the thing being constructed. Now the constructor can be
* treated like a function call. Each numeric type has a small set
* of constructor functions. The set of new parameters will either
* match one of those functions or the original constructor is
* invalid.
*/
const glsl_type *const base_type = constructor_type->get_base_type();
/* Total number of components of the type being constructed.
*/
const unsigned type_components = constructor_type->components();
/* Number of components from parameters that have actually been
* consumed. This is used to perform several kinds of error checking.
*/
unsigned components_used = 0;
unsigned matrix_parameters = 0;
unsigned nonmatrix_parameters = 0;
exec_list actual_parameters;
bool all_parameters_are_constant = true;
/* This handles invalid constructor calls such as 'vec4 v = vec4();'
*/
if (this->expressions.is_empty()) {
_mesa_glsl_error(& loc, state, "too few components to construct "
"`%s'",
constructor_type->name);
return ir_call::get_error_instruction();
}
foreach_list (n, &this->expressions) {
ast_node *ast = exec_node_data(ast_node, n, link);
ir_rvalue *result =
ast->hir(instructions, state)->as_rvalue();
ir_variable *result_var = NULL;
/* Attempt to convert the parameter to a constant valued expression.
* After doing so, track whether or not all the parameters to the
* constructor are trivially constant valued expressions.
*/
ir_rvalue *const constant =
result->constant_expression_value();
if (constant != NULL)
result = constant;
else
all_parameters_are_constant = false;
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "It is an error to provide extra arguments beyond this
* last used argument."
*/
if (components_used >= type_components) {
_mesa_glsl_error(& loc, state, "too many parameters to `%s' "
"constructor",
constructor_type->name);
return ir_call::get_error_instruction();
}
if (!result->type->is_numeric() && !result->type->is_boolean()) {
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
"non-numeric data type",
constructor_type->name);
return ir_call::get_error_instruction();
}
/* Count the number of matrix and nonmatrix parameters. This
* is used below to enforce some of the constructor rules.
*/
if (result->type->is_matrix())
matrix_parameters++;
else
nonmatrix_parameters++;
/* We can't use the same instruction node in the multiple
* swizzle dereferences that happen, so assign it to a
* variable and deref that. Plus it saves computation for
* complicated expressions and handles
* glsl-vs-constructor-call.shader_test.
*/
if (result->type->components() >= 1 && !result->as_constant()) {
result_var = new ir_variable(result->type, "constructor_tmp");
ir_dereference_variable *lhs;
lhs = new ir_dereference_variable(result_var);
instructions->push_tail(new ir_assignment(lhs, result, NULL));
}
/* Process each of the components of the parameter. Dereference
* each component individually, perform any type conversions, and
* add it to the parameter list for the constructor.
*/
for (unsigned i = 0; i < result->type->components(); i++) {
if (components_used >= type_components)
break;
ir_rvalue *component;
if (result_var) {
ir_dereference *d = new ir_dereference_variable(result_var);
component = dereference_component(d, i);
} else {
component = dereference_component(result, i);
}
component = convert_component(component, base_type);
/* All cases that could result in component->type being the
* error type should have already been caught above.
*/
assert(component->type == base_type);
if (component->as_constant() == NULL)
all_parameters_are_constant = false;
/* Don't actually generate constructor calls for scalars.
* Instead, do the usual component selection and conversion,
* and return the single component.
*/
if (constructor_type->is_scalar())
return component;
actual_parameters.push_tail(component);
components_used++;
}
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to construct matrices from other matrices. This
* is reserved for future use."
*/
if ((state->language_version <= 110) && (matrix_parameters > 0)
&& constructor_type->is_matrix()) {
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
"matrix in GLSL 1.10",
constructor_type->name);
return ir_call::get_error_instruction();
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "If a matrix argument is given to a matrix constructor, it is
* an error to have any other arguments."
*/
if ((matrix_parameters > 0)
&& ((matrix_parameters + nonmatrix_parameters) > 1)
&& constructor_type->is_matrix()) {
_mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
"matrix must be only parameter",
constructor_type->name);
return ir_call::get_error_instruction();
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "In these cases, there must be enough components provided in the
* arguments to provide an initializer for every component in the
* constructed value."
*/
if ((components_used < type_components) && (components_used != 1)) {
_mesa_glsl_error(& loc, state, "too few components to construct "
"`%s'",
constructor_type->name);
return ir_call::get_error_instruction();
}
ir_function *f = state->symbols->get_function(constructor_type->name);
if (f == NULL) {
_mesa_glsl_error(& loc, state, "no constructor for type `%s'",
constructor_type->name);
return ir_call::get_error_instruction();
}
const ir_function_signature *sig =
f->matching_signature(& actual_parameters);
if (sig != NULL) {
/* If all of the parameters are trivially constant, create a
* constant representing the complete collection of parameters.
*/
if (all_parameters_are_constant) {
if (components_used >= type_components)
return new ir_constant(sig->return_type, & actual_parameters);
assert(sig->return_type->is_vector()
|| sig->return_type->is_matrix());
/* Constructors with exactly one component are special for
* vectors and matrices. For vectors it causes all elements of
* the vector to be filled with the value. For matrices it
* causes the matrix to be filled with 0 and the diagonal to be
* filled with the value.
*/
ir_constant_data data;
ir_constant *const initializer =
(ir_constant *) actual_parameters.head;
if (sig->return_type->is_matrix())
generate_constructor_matrix(sig->return_type, initializer,
&data);
else
generate_constructor_vector(sig->return_type, initializer,
&data);
return new ir_constant(sig->return_type, &data);
} else
return new ir_call(sig, & actual_parameters);
} else {
/* FINISHME: Log a better error message here. G++ will show the
* FINSIHME: types of the actual parameters and the set of
* FINSIHME: candidate functions. A different error should also be
* FINSIHME: logged when multiple functions match.
*/
_mesa_glsl_error(& loc, state, "no matching constructor for `%s'",
constructor_type->name);
return ir_call::get_error_instruction();
}
}
return ir_call::get_error_instruction();
} else {
const ast_expression *id = subexpressions[0];
YYLTYPE loc = id->get_location();
exec_list actual_parameters;
process_parameters(instructions, &actual_parameters, &this->expressions,
state);
const glsl_type *const type =
state->symbols->get_type(id->primary_expression.identifier);
if ((type != NULL) && type->is_record()) {
ir_constant *constant =
constant_record_constructor(type, &loc, &actual_parameters, state);
if (constant != NULL)
return constant;
}
return match_function_by_name(instructions,
id->primary_expression.identifier, & loc,
&actual_parameters, state);
}
return ir_call::get_error_instruction();
}