mesa/src/freedreno/vulkan/tu_descriptor_set.c

1025 lines
36 KiB
C
Raw Normal View History

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file
*
* The texture and sampler descriptors are laid out in a single global space
* across all shader stages, for both simplicity of implementation and because
* that seems to be how things have to be structured for border color
* handling.
*
* Each shader stage will declare its texture/sampler count based on the last
* descriptor set it uses. At draw emit time (though it really should be
* CmdBind time), we upload the descriptor sets used by each shader stage to
* their stage.
*/
#include "tu_private.h"
#include <assert.h>
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include "util/mesa-sha1.h"
#include "vk_util.h"
static int
binding_compare(const void *av, const void *bv)
{
const VkDescriptorSetLayoutBinding *a =
(const VkDescriptorSetLayoutBinding *) av;
const VkDescriptorSetLayoutBinding *b =
(const VkDescriptorSetLayoutBinding *) bv;
return (a->binding < b->binding) ? -1 : (a->binding > b->binding) ? 1 : 0;
}
static VkDescriptorSetLayoutBinding *
create_sorted_bindings(const VkDescriptorSetLayoutBinding *bindings,
unsigned count)
{
VkDescriptorSetLayoutBinding *sorted_bindings =
malloc(count * sizeof(VkDescriptorSetLayoutBinding));
if (!sorted_bindings)
return NULL;
memcpy(sorted_bindings, bindings,
count * sizeof(VkDescriptorSetLayoutBinding));
qsort(sorted_bindings, count, sizeof(VkDescriptorSetLayoutBinding),
binding_compare);
return sorted_bindings;
}
static uint32_t
descriptor_size(enum VkDescriptorType type)
{
switch (type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return 0;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
/* 64bit pointer */
return 8;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
return A6XX_TEX_CONST_DWORDS * 4;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
/* We may need the IBO or the TEX representation, or both. */
return A6XX_TEX_CONST_DWORDS * 4 * 2;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
/* texture const + tu_sampler struct (includes border color) */
return A6XX_TEX_CONST_DWORDS * 4 + sizeof(struct tu_sampler);
case VK_DESCRIPTOR_TYPE_SAMPLER:
return sizeof(struct tu_sampler);
default:
unreachable("unknown descriptor type\n");
return 0;
}
}
VkResult
tu_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorSetLayout *pSetLayout)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_descriptor_set_layout *set_layout;
assert(pCreateInfo->sType ==
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags =
vk_find_struct_const(
pCreateInfo->pNext,
DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
uint32_t max_binding = 0;
uint32_t immutable_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
pCreateInfo->pBindings[j].pImmutableSamplers) {
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
}
uint32_t samplers_offset = sizeof(struct tu_descriptor_set_layout) +
(max_binding + 1) * sizeof(set_layout->binding[0]);
uint32_t size = samplers_offset + immutable_sampler_count * sizeof(struct tu_sampler);
set_layout = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!set_layout)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
set_layout->flags = pCreateInfo->flags;
/* We just allocate all the samplers at the end of the struct */
struct tu_sampler *samplers = (void*) &set_layout->binding[max_binding + 1];
VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings(
pCreateInfo->pBindings, pCreateInfo->bindingCount);
if (!bindings) {
vk_free2(&device->alloc, pAllocator, set_layout);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
set_layout->binding_count = max_binding + 1;
set_layout->shader_stages = 0;
set_layout->dynamic_shader_stages = 0;
set_layout->has_immutable_samplers = false;
set_layout->size = 0;
memset(set_layout->binding, 0,
size - sizeof(struct tu_descriptor_set_layout));
uint32_t buffer_count = 0;
uint32_t dynamic_offset_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
const VkDescriptorSetLayoutBinding *binding = bindings + j;
uint32_t b = binding->binding;
uint32_t alignment = 4;
unsigned binding_buffer_count = 1;
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
binding_buffer_count = 0;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
assert(!(pCreateInfo->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
set_layout->binding[b].dynamic_offset_count = 1;
break;
default:
break;
}
set_layout->size = align(set_layout->size, alignment);
set_layout->binding[b].type = binding->descriptorType;
set_layout->binding[b].array_size = binding->descriptorCount;
set_layout->binding[b].offset = set_layout->size;
set_layout->binding[b].buffer_offset = buffer_count;
set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count;
set_layout->binding[b].size = descriptor_size(binding->descriptorType);
if (variable_flags && binding->binding < variable_flags->bindingCount &&
(variable_flags->pBindingFlags[binding->binding] &
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) {
assert(!binding->pImmutableSamplers); /* Terribly ill defined how
many samplers are valid */
assert(binding->binding == max_binding);
set_layout->has_variable_descriptors = true;
}
if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
binding->pImmutableSamplers) {
set_layout->binding[b].immutable_samplers_offset = samplers_offset;
set_layout->has_immutable_samplers = true;
for (uint32_t i = 0; i < binding->descriptorCount; i++)
samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
samplers += binding->descriptorCount;
samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
}
set_layout->size +=
binding->descriptorCount * set_layout->binding[b].size;
buffer_count += binding->descriptorCount * binding_buffer_count;
dynamic_offset_count += binding->descriptorCount *
set_layout->binding[b].dynamic_offset_count;
set_layout->shader_stages |= binding->stageFlags;
}
free(bindings);
set_layout->buffer_count = buffer_count;
set_layout->dynamic_offset_count = dynamic_offset_count;
*pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
void
tu_DestroyDescriptorSetLayout(VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
vk_free2(&device->alloc, pAllocator, set_layout);
}
void
tu_GetDescriptorSetLayoutSupport(
VkDevice device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
VkDescriptorSetLayoutSupport *pSupport)
{
VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings(
pCreateInfo->pBindings, pCreateInfo->bindingCount);
if (!bindings) {
pSupport->supported = false;
return;
}
const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags =
vk_find_struct_const(
pCreateInfo->pNext,
DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
VkDescriptorSetVariableDescriptorCountLayoutSupportEXT *variable_count =
vk_find_struct(
(void *) pCreateInfo->pNext,
DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT);
if (variable_count) {
variable_count->maxVariableDescriptorCount = 0;
}
bool supported = true;
uint64_t size = 0;
for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
const VkDescriptorSetLayoutBinding *binding = bindings + i;
uint64_t descriptor_sz = descriptor_size(binding->descriptorType);
uint64_t descriptor_alignment = 8;
if (size && !align_u64(size, descriptor_alignment)) {
supported = false;
}
size = align_u64(size, descriptor_alignment);
uint64_t max_count = UINT64_MAX;
if (descriptor_sz)
max_count = (UINT64_MAX - size) / descriptor_sz;
if (max_count < binding->descriptorCount) {
supported = false;
}
if (variable_flags && binding->binding < variable_flags->bindingCount &&
variable_count &&
(variable_flags->pBindingFlags[binding->binding] &
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) {
variable_count->maxVariableDescriptorCount =
MIN2(UINT32_MAX, max_count);
}
size += binding->descriptorCount * descriptor_sz;
}
free(bindings);
pSupport->supported = supported;
}
/*
* Pipeline layouts. These have nothing to do with the pipeline. They are
* just multiple descriptor set layouts pasted together.
*/
VkResult
tu_CreatePipelineLayout(VkDevice _device,
const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipelineLayout *pPipelineLayout)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_pipeline_layout *layout;
struct mesa_sha1 ctx;
assert(pCreateInfo->sType ==
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (layout == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
unsigned dynamic_offset_count = 0;
_mesa_sha1_init(&ctx);
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
layout->set[set].layout = set_layout;
layout->set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
dynamic_offset_count += set_layout->binding[b].array_size *
set_layout->binding[b].dynamic_offset_count;
if (set_layout->binding[b].immutable_samplers_offset)
_mesa_sha1_update(
&ctx,
tu_immutable_samplers(set_layout, set_layout->binding + b),
set_layout->binding[b].array_size * 4 * sizeof(uint32_t));
}
_mesa_sha1_update(
&ctx, set_layout->binding,
sizeof(set_layout->binding[0]) * set_layout->binding_count);
}
layout->dynamic_offset_count = dynamic_offset_count;
layout->push_constant_size = 0;
for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
layout->push_constant_size =
MAX2(layout->push_constant_size, range->offset + range->size);
}
layout->push_constant_size = align(layout->push_constant_size, 16);
_mesa_sha1_update(&ctx, &layout->push_constant_size,
sizeof(layout->push_constant_size));
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = tu_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
void
tu_DestroyPipelineLayout(VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
vk_free2(&device->alloc, pAllocator, pipeline_layout);
}
#define EMPTY 1
static VkResult
tu_descriptor_set_create(struct tu_device *device,
struct tu_descriptor_pool *pool,
const struct tu_descriptor_set_layout *layout,
const uint32_t *variable_count,
struct tu_descriptor_set **out_set)
{
struct tu_descriptor_set *set;
uint32_t buffer_count = layout->buffer_count;
if (variable_count) {
unsigned stride = 1;
if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_SAMPLER ||
layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT)
stride = 0;
buffer_count = layout->binding[layout->binding_count - 1].buffer_offset +
*variable_count * stride;
}
unsigned range_offset = sizeof(struct tu_descriptor_set) +
sizeof(struct tu_bo *) * buffer_count;
unsigned mem_size = range_offset +
sizeof(struct tu_descriptor_range) * layout->dynamic_offset_count;
if (pool->host_memory_base) {
if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY);
set = (struct tu_descriptor_set*)pool->host_memory_ptr;
pool->host_memory_ptr += mem_size;
} else {
set = vk_alloc2(&device->alloc, NULL, mem_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!set)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
memset(set, 0, mem_size);
if (layout->dynamic_offset_count) {
set->dynamic_descriptors = (struct tu_descriptor_range*)((uint8_t*)set + range_offset);
}
set->layout = layout;
uint32_t layout_size = layout->size;
if (variable_count) {
assert(layout->has_variable_descriptors);
uint32_t stride = layout->binding[layout->binding_count - 1].size;
if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT)
stride = 1;
layout_size = layout->binding[layout->binding_count - 1].offset +
*variable_count * stride;
}
if (layout_size) {
set->size = layout_size;
if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
vk_free2(&device->alloc, NULL, set);
return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY);
}
/* try to allocate linearly first, so that we don't spend
* time looking for gaps if the app only allocates &
* resets via the pool. */
if (pool->current_offset + layout_size <= pool->size) {
set->mapped_ptr = (uint32_t*)(pool->bo.map + pool->current_offset);
set->va = pool->bo.iova + pool->current_offset;
if (!pool->host_memory_base) {
pool->entries[pool->entry_count].offset = pool->current_offset;
pool->entries[pool->entry_count].size = layout_size;
pool->entries[pool->entry_count].set = set;
pool->entry_count++;
}
pool->current_offset += layout_size;
} else if (!pool->host_memory_base) {
uint64_t offset = 0;
int index;
for (index = 0; index < pool->entry_count; ++index) {
if (pool->entries[index].offset - offset >= layout_size)
break;
offset = pool->entries[index].offset + pool->entries[index].size;
}
if (pool->size - offset < layout_size) {
vk_free2(&device->alloc, NULL, set);
return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY);
}
set->mapped_ptr = (uint32_t*)(pool->bo.map + offset);
set->va = pool->bo.iova + offset;
memmove(&pool->entries[index + 1], &pool->entries[index],
sizeof(pool->entries[0]) * (pool->entry_count - index));
pool->entries[index].offset = offset;
pool->entries[index].size = layout_size;
pool->entries[index].set = set;
pool->entry_count++;
} else
return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY);
}
*out_set = set;
return VK_SUCCESS;
}
static void
tu_descriptor_set_destroy(struct tu_device *device,
struct tu_descriptor_pool *pool,
struct tu_descriptor_set *set,
bool free_bo)
{
assert(!pool->host_memory_base);
if (free_bo && set->size && !pool->host_memory_base) {
uint32_t offset = (uint8_t*)set->mapped_ptr - (uint8_t*)pool->bo.map;
for (int i = 0; i < pool->entry_count; ++i) {
if (pool->entries[i].offset == offset) {
memmove(&pool->entries[i], &pool->entries[i+1],
sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
--pool->entry_count;
break;
}
}
}
vk_free2(&device->alloc, NULL, set);
}
VkResult
tu_CreateDescriptorPool(VkDevice _device,
const VkDescriptorPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorPool *pDescriptorPool)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_descriptor_pool *pool;
uint64_t size = sizeof(struct tu_descriptor_pool);
uint64_t bo_size = 0, bo_count = 0, range_count = 0;
for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER)
bo_count += pCreateInfo->pPoolSizes[i].descriptorCount;
switch(pCreateInfo->pPoolSizes[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
range_count += pCreateInfo->pPoolSizes[i].descriptorCount;
default:
break;
}
bo_size += descriptor_size(pCreateInfo->pPoolSizes[i].type) *
pCreateInfo->pPoolSizes[i].descriptorCount;
}
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
host_size += sizeof(struct tu_bo*) * bo_count;
host_size += sizeof(struct tu_descriptor_range) * range_count;
size += host_size;
} else {
size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
}
pool = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pool)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pool, 0, sizeof(*pool));
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
pool->host_memory_ptr = pool->host_memory_base;
pool->host_memory_end = (uint8_t*)pool + size;
}
if (bo_size) {
VkResult ret;
ret = tu_bo_init_new(device, &pool->bo, bo_size);
assert(ret == VK_SUCCESS);
ret = tu_bo_map(device, &pool->bo);
assert(ret == VK_SUCCESS);
}
pool->size = bo_size;
pool->max_entry_count = pCreateInfo->maxSets;
*pDescriptorPool = tu_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
}
void
tu_DestroyDescriptorPool(VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
if (!pool)
return;
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
}
if (pool->size)
tu_bo_finish(device, &pool->bo);
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult
tu_ResetDescriptorPool(VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
pool->entry_count = 0;
}
pool->current_offset = 0;
pool->host_memory_ptr = pool->host_memory_base;
return VK_SUCCESS;
}
VkResult
tu_AllocateDescriptorSets(VkDevice _device,
const VkDescriptorSetAllocateInfo *pAllocateInfo,
VkDescriptorSet *pDescriptorSets)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
uint32_t i;
struct tu_descriptor_set *set = NULL;
const VkDescriptorSetVariableDescriptorCountAllocateInfoEXT *variable_counts =
vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT);
const uint32_t zero = 0;
/* allocate a set of buffers for each shader to contain descriptors */
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
TU_FROM_HANDLE(tu_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
const uint32_t *variable_count = NULL;
if (variable_counts) {
if (i < variable_counts->descriptorSetCount)
variable_count = variable_counts->pDescriptorCounts + i;
else
variable_count = &zero;
}
assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
result = tu_descriptor_set_create(device, pool, layout, variable_count, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS) {
tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
pDescriptorSets[i] = VK_NULL_HANDLE;
}
}
return result;
}
VkResult
tu_FreeDescriptorSets(VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet *pDescriptorSets)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
if (set && !pool->host_memory_base)
tu_descriptor_set_destroy(device, pool, set, true);
}
return VK_SUCCESS;
}
static void write_texel_buffer_descriptor(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
unsigned *dst,
struct tu_bo **buffer_list,
const VkBufferView _buffer_view)
{
tu_finishme("texel buffer descriptor");
}
static void write_buffer_descriptor(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
unsigned *dst,
struct tu_bo **buffer_list,
const VkDescriptorBufferInfo *buffer_info)
{
TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset;
dst[0] = va;
dst[1] = va >> 32;
if (cmd_buffer)
tu_bo_list_add(&cmd_buffer->bo_list, buffer->bo, MSM_SUBMIT_BO_READ);
else
*buffer_list = buffer->bo;
}
static void write_dynamic_buffer_descriptor(struct tu_device *device,
struct tu_descriptor_range *range,
struct tu_bo **buffer_list,
const VkDescriptorBufferInfo *buffer_info)
{
TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset;
unsigned size = buffer_info->range;
if (buffer_info->range == VK_WHOLE_SIZE)
size = buffer->size - buffer_info->offset;
range->va = va;
range->size = size;
*buffer_list = buffer->bo;
}
static void
write_image_descriptor(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
unsigned *dst,
struct tu_bo **buffer_list,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info)
{
TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
memcpy(dst, iview->descriptor, sizeof(iview->descriptor));
if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
memcpy(&dst[A6XX_TEX_CONST_DWORDS], iview->storage_descriptor,
sizeof(iview->storage_descriptor));
}
if (cmd_buffer)
tu_bo_list_add(&cmd_buffer->bo_list, iview->image->bo, MSM_SUBMIT_BO_READ);
else
*buffer_list = iview->image->bo;
}
static void
write_combined_image_sampler_descriptor(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
unsigned sampler_offset,
unsigned *dst,
struct tu_bo **buffer_list,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info,
bool has_sampler)
{
TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
write_image_descriptor(device, cmd_buffer, dst, buffer_list,
descriptor_type, image_info);
/* copy over sampler state */
if (has_sampler) {
memcpy(dst + sampler_offset / sizeof(*dst), sampler, sizeof(*sampler));
}
}
static void
write_sampler_descriptor(struct tu_device *device,
unsigned *dst,
const VkDescriptorImageInfo *image_info)
{
TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
memcpy(dst, sampler, sizeof(*sampler));
}
void
tu_update_descriptor_sets(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
VkDescriptorSet dstSetOverride,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies)
{
uint32_t i, j;
for (i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
TU_FROM_HANDLE(tu_descriptor_set, set,
dstSetOverride ? dstSetOverride : writeset->dstSet);
const struct tu_descriptor_set_binding_layout *binding_layout =
set->layout->binding + writeset->dstBinding;
uint32_t *ptr = set->mapped_ptr;
struct tu_bo **buffer_list = set->descriptors;
ptr += binding_layout->offset / 4;
ptr += binding_layout->size * writeset->dstArrayElement / 4;
buffer_list += binding_layout->buffer_offset;
buffer_list += writeset->dstArrayElement;
for (j = 0; j < writeset->descriptorCount; ++j) {
switch(writeset->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
unsigned idx = writeset->dstArrayElement + j;
idx += binding_layout->dynamic_offset_offset;
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
write_dynamic_buffer_descriptor(device, set->dynamic_descriptors + idx,
buffer_list, writeset->pBufferInfo + j);
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
write_buffer_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->pBufferInfo + j);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
write_texel_buffer_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->pTexelBufferView[j]);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
write_image_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->descriptorType,
writeset->pImageInfo + j);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
write_combined_image_sampler_descriptor(device, cmd_buffer,
A6XX_TEX_CONST_DWORDS * 4,
ptr, buffer_list,
writeset->descriptorType,
writeset->pImageInfo + j,
!binding_layout->immutable_samplers_offset);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
write_sampler_descriptor(device, ptr, writeset->pImageInfo + j);
break;
default:
unreachable("unimplemented descriptor type");
break;
}
ptr += binding_layout->size / 4;
++buffer_list;
}
}
for (i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
TU_FROM_HANDLE(tu_descriptor_set, src_set,
copyset->srcSet);
TU_FROM_HANDLE(tu_descriptor_set, dst_set,
copyset->dstSet);
const struct tu_descriptor_set_binding_layout *src_binding_layout =
src_set->layout->binding + copyset->srcBinding;
const struct tu_descriptor_set_binding_layout *dst_binding_layout =
dst_set->layout->binding + copyset->dstBinding;
uint32_t *src_ptr = src_set->mapped_ptr;
uint32_t *dst_ptr = dst_set->mapped_ptr;
struct tu_bo **src_buffer_list = src_set->descriptors;
struct tu_bo **dst_buffer_list = dst_set->descriptors;
src_ptr += src_binding_layout->offset / 4;
dst_ptr += dst_binding_layout->offset / 4;
src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
src_buffer_list += src_binding_layout->buffer_offset;
src_buffer_list += copyset->srcArrayElement;
dst_buffer_list += dst_binding_layout->buffer_offset;
dst_buffer_list += copyset->dstArrayElement;
for (j = 0; j < copyset->descriptorCount; ++j) {
switch (src_binding_layout->type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
unsigned src_idx = copyset->srcArrayElement + j;
unsigned dst_idx = copyset->dstArrayElement + j;
struct tu_descriptor_range *src_range, *dst_range;
src_idx += src_binding_layout->dynamic_offset_offset;
dst_idx += dst_binding_layout->dynamic_offset_offset;
src_range = src_set->dynamic_descriptors + src_idx;
dst_range = dst_set->dynamic_descriptors + dst_idx;
*dst_range = *src_range;
break;
}
default:
memcpy(dst_ptr, src_ptr, src_binding_layout->size);
}
src_ptr += src_binding_layout->size / 4;
dst_ptr += dst_binding_layout->size / 4;
if (src_binding_layout->type != VK_DESCRIPTOR_TYPE_SAMPLER) {
/* Sampler descriptors don't have a buffer list. */
dst_buffer_list[j] = src_buffer_list[j];
}
}
}
}
void
tu_UpdateDescriptorSets(VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies)
{
TU_FROM_HANDLE(tu_device, device, _device);
tu_update_descriptor_sets(device, NULL, VK_NULL_HANDLE,
descriptorWriteCount, pDescriptorWrites,
descriptorCopyCount, pDescriptorCopies);
}
VkResult
tu_CreateDescriptorUpdateTemplate(
VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
pCreateInfo->descriptorSetLayout);
const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
const size_t size =
sizeof(struct tu_descriptor_update_template) +
sizeof(struct tu_descriptor_update_template_entry) * entry_count;
struct tu_descriptor_update_template *templ;
templ = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!templ)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
*pDescriptorUpdateTemplate =
tu_descriptor_update_template_to_handle(templ);
tu_use_args(set_layout);
tu_stub();
return VK_SUCCESS;
}
void
tu_DestroyDescriptorUpdateTemplate(
VkDevice _device,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_update_template, templ,
descriptorUpdateTemplate);
if (!templ)
return;
vk_free2(&device->alloc, pAllocator, templ);
}
void
tu_update_descriptor_set_with_template(
struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
struct tu_descriptor_set *set,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData)
{
TU_FROM_HANDLE(tu_descriptor_update_template, templ,
descriptorUpdateTemplate);
tu_use_args(templ);
}
void
tu_UpdateDescriptorSetWithTemplate(
VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
tu_update_descriptor_set_with_template(device, NULL, set,
descriptorUpdateTemplate, pData);
}
VkResult
tu_CreateSamplerYcbcrConversion(
VkDevice device,
const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSamplerYcbcrConversion *pYcbcrConversion)
{
*pYcbcrConversion = VK_NULL_HANDLE;
return VK_SUCCESS;
}
void
tu_DestroySamplerYcbcrConversion(VkDevice device,
VkSamplerYcbcrConversion ycbcrConversion,
const VkAllocationCallbacks *pAllocator)
{
/* Do nothing. */
}