mesa/src/amd/compiler/aco_scheduler.cpp

856 lines
33 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include <unordered_set>
#include <algorithm>
#include "vulkan/radv_shader.h" // for radv_nir_compiler_options
#include "amdgfxregs.h"
#define SMEM_WINDOW_SIZE (350 - ctx.num_waves * 35)
#define VMEM_WINDOW_SIZE (1024 - ctx.num_waves * 64)
#define POS_EXP_WINDOW_SIZE 512
#define SMEM_MAX_MOVES (64 - ctx.num_waves * 4)
#define VMEM_MAX_MOVES (128 - ctx.num_waves * 8)
#define POS_EXP_MAX_MOVES 512
namespace aco {
struct sched_ctx {
std::vector<bool> depends_on;
std::vector<bool> RAR_dependencies;
RegisterDemand max_registers;
int16_t num_waves;
int16_t last_SMEM_stall;
int last_SMEM_dep_idx;
};
/* This scheduler is a simple bottom-up pass based on ideas from
* "A Novel Lightweight Instruction Scheduling Algorithm for Just-In-Time Compiler"
* from Xiaohua Shi and Peng Guo.
* The basic approach is to iterate over all instructions. When a memory instruction
* is encountered it tries to move independent instructions from above and below
* between the memory instruction and it's first user.
* The novelty is that this scheduler cares for the current register pressure:
* Instructions will only be moved if the register pressure won't exceed a certain bound.
*/
template <typename T>
void move_element(T& list, size_t idx, size_t before) {
if (idx < before) {
auto begin = std::next(list.begin(), idx);
auto end = std::next(list.begin(), before);
std::rotate(begin, begin + 1, end);
} else if (idx > before) {
auto begin = std::next(list.begin(), before);
auto end = std::next(list.begin(), idx + 1);
std::rotate(begin, end - 1, end);
}
}
static RegisterDemand getLiveChanges(aco_ptr<Instruction>& instr)
{
RegisterDemand changes;
for (const Definition& def : instr->definitions) {
if (!def.isTemp() || def.isKill())
continue;
changes += def.getTemp();
}
for (const Operand& op : instr->operands) {
if (!op.isTemp() || !op.isFirstKill())
continue;
changes -= op.getTemp();
}
return changes;
}
static RegisterDemand getTempRegisters(aco_ptr<Instruction>& instr)
{
RegisterDemand temp_registers;
for (const Definition& def : instr->definitions) {
if (!def.isTemp() || !def.isKill())
continue;
temp_registers += def.getTemp();
}
return temp_registers;
}
static bool is_spill_reload(aco_ptr<Instruction>& instr)
{
return instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload;
}
bool can_move_instr(aco_ptr<Instruction>& instr, Instruction* current, int moving_interaction)
{
/* don't move exports so that they stay closer together */
if (instr->format == Format::EXP)
return false;
/* don't move s_memtime/s_memrealtime */
if (instr->opcode == aco_opcode::s_memtime || instr->opcode == aco_opcode::s_memrealtime)
return false;
/* handle barriers */
/* TODO: instead of stopping, maybe try to move the barriers and any
* instructions interacting with them instead? */
if (instr->format != Format::PSEUDO_BARRIER) {
if (instr->opcode == aco_opcode::s_barrier) {
bool can_reorder = false;
switch (current->format) {
case Format::SMEM:
can_reorder = static_cast<SMEM_instruction*>(current)->can_reorder;
break;
case Format::MUBUF:
can_reorder = static_cast<MUBUF_instruction*>(current)->can_reorder;
break;
case Format::MIMG:
can_reorder = static_cast<MIMG_instruction*>(current)->can_reorder;
break;
default:
break;
}
return can_reorder && moving_interaction == barrier_none;
} else {
return true;
}
}
int interaction = get_barrier_interaction(current);
interaction |= moving_interaction;
switch (instr->opcode) {
case aco_opcode::p_memory_barrier_atomic:
return !(interaction & barrier_atomic);
/* For now, buffer and image barriers are treated the same. this is because of
* dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
* which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important.
* I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it
* and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers.
* Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to?
* Either way, this solution should work. */
case aco_opcode::p_memory_barrier_buffer:
case aco_opcode::p_memory_barrier_image:
return !(interaction & (barrier_image | barrier_buffer));
case aco_opcode::p_memory_barrier_shared:
return !(interaction & barrier_shared);
case aco_opcode::p_memory_barrier_all:
return interaction == barrier_none;
default:
return false;
}
}
bool can_reorder(Instruction* candidate, bool allow_smem)
{
switch (candidate->format) {
case Format::SMEM:
return allow_smem || static_cast<SMEM_instruction*>(candidate)->can_reorder;
case Format::MUBUF:
return static_cast<MUBUF_instruction*>(candidate)->can_reorder;
case Format::MIMG:
return static_cast<MIMG_instruction*>(candidate)->can_reorder;
case Format::MTBUF:
return static_cast<MTBUF_instruction*>(candidate)->can_reorder;
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
return false;
default:
return true;
}
}
void schedule_SMEM(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = SMEM_WINDOW_SIZE;
int max_moves = SMEM_MAX_MOVES;
int16_t k = 0;
bool can_reorder_cur = can_reorder(current, false);
/* don't move s_memtime/s_memrealtime */
if (current->opcode == aco_opcode::s_memtime || current->opcode == aco_opcode::s_memrealtime)
return;
/* create the initial set of values which current depends on */
std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
for (const Operand& op : current->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
/* maintain how many registers remain free when moving instructions */
RegisterDemand register_pressure = register_demand[idx];
/* first, check if we have instructions before current to move down */
int insert_idx = idx + 1;
int moving_interaction = barrier_none;
bool moving_spill = false;
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
break;
/* break when encountering another MEM instruction, logical_start or barriers */
if (!can_reorder(candidate.get(), false) && !can_reorder_cur)
break;
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
register_pressure.update(register_demand[candidate_idx]);
/* if current depends on candidate, add additional dependencies and continue */
bool can_move_down = true;
bool writes_exec = false;
for (const Definition& def : candidate->definitions) {
if (def.isTemp() && ctx.depends_on[def.tempId()])
can_move_down = false;
if (def.isFixed() && def.physReg() == exec)
writes_exec = true;
}
if (writes_exec)
break;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
continue;
}
bool register_pressure_unknown = false;
/* check if one of candidate's operands is killed by depending instruction */
for (const Operand& op : candidate->operands) {
if (op.isTemp() && ctx.depends_on[op.tempId()]) {
// FIXME: account for difference in register pressure
register_pressure_unknown = true;
}
}
if (register_pressure_unknown) {
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
continue;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = getLiveChanges(candidate);
const RegisterDemand tempDemand = getTempRegisters(candidate);
if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
break;
const RegisterDemand tempDemand2 = getTempRegisters(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - tempDemand2 + tempDemand;
if (new_demand.exceeds(ctx.max_registers))
break;
// TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure
/* move the candidate below the memory load */
move_element(block->instructions, candidate_idx, insert_idx);
/* update register pressure */
move_element(register_demand, candidate_idx, insert_idx);
for (int i = candidate_idx; i < insert_idx - 1; i++) {
register_demand[i] -= candidate_diff;
}
register_demand[insert_idx - 1] = new_demand;
register_pressure -= candidate_diff;
if (candidate_idx < ctx.last_SMEM_dep_idx)
ctx.last_SMEM_stall++;
insert_idx--;
k++;
}
/* create the initial set of values which depend on current */
std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
std::fill(ctx.RAR_dependencies.begin(), ctx.RAR_dependencies.end(), false);
for (const Definition& def : current->definitions) {
if (def.isTemp())
ctx.depends_on[def.tempId()] = true;
}
/* find the first instruction depending on current or find another MEM */
insert_idx = idx + 1;
moving_interaction = barrier_none;
moving_spill = false;
bool found_dependency = false;
/* second, check if we have instructions after current to move up */
for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
if (candidate->opcode == aco_opcode::p_logical_end)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
[](const Definition& def) { return def.isFixed() && def.physReg() == exec;});
if (writes_exec)
break;
/* check if candidate depends on current */
bool is_dependency = std::any_of(candidate->operands.begin(), candidate->operands.end(),
[&ctx](const Operand& op) { return op.isTemp() && ctx.depends_on[op.tempId()];});
if (moving_spill && is_spill_reload(candidate))
is_dependency = true;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
is_dependency = true;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (is_dependency) {
for (const Definition& def : candidate->definitions) {
if (def.isTemp())
ctx.depends_on[def.tempId()] = true;
}
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.RAR_dependencies[op.tempId()] = true;
}
if (!found_dependency) {
insert_idx = candidate_idx;
found_dependency = true;
/* init register pressure */
register_pressure = register_demand[insert_idx - 1];
}
}
if (!can_reorder(candidate.get(), false) && !can_reorder_cur)
break;
if (!found_dependency) {
k++;
continue;
}
/* update register pressure */
register_pressure.update(register_demand[candidate_idx - 1]);
if (is_dependency)
continue;
assert(insert_idx != idx);
// TODO: correctly calculate register pressure for this case
bool register_pressure_unknown = false;
/* check if candidate uses/kills an operand which is used by a dependency */
for (const Operand& op : candidate->operands) {
if (op.isTemp() && ctx.RAR_dependencies[op.tempId()])
register_pressure_unknown = true;
}
if (register_pressure_unknown) {
for (const Definition& def : candidate->definitions) {
if (def.isTemp())
ctx.RAR_dependencies[def.tempId()] = true;
}
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.RAR_dependencies[op.tempId()] = true;
}
continue;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = getLiveChanges(candidate);
const RegisterDemand temp = getTempRegisters(candidate);
if (RegisterDemand(register_pressure + candidate_diff).exceeds(ctx.max_registers))
break;
const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp;
if (new_demand.exceeds(ctx.max_registers))
break;
/* move the candidate above the insert_idx */
move_element(block->instructions, candidate_idx, insert_idx);
/* update register pressure */
move_element(register_demand, candidate_idx, insert_idx);
for (int i = insert_idx + 1; i <= candidate_idx; i++) {
register_demand[i] += candidate_diff;
}
register_demand[insert_idx] = new_demand;
register_pressure += candidate_diff;
insert_idx++;
k++;
}
ctx.last_SMEM_dep_idx = found_dependency ? insert_idx : 0;
ctx.last_SMEM_stall = 10 - ctx.num_waves - k;
}
void schedule_VMEM(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = VMEM_WINDOW_SIZE;
int max_moves = VMEM_MAX_MOVES;
int16_t k = 0;
bool can_reorder_cur = can_reorder(current, false);
/* create the initial set of values which current depends on */
std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
for (const Operand& op : current->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
/* maintain how many registers remain free when moving instructions */
RegisterDemand register_pressure = register_demand[idx];
/* first, check if we have instructions before current to move down */
int insert_idx = idx + 1;
int moving_interaction = barrier_none;
bool moving_spill = false;
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
/* break when encountering another VMEM instruction, logical_start or barriers */
if (!can_reorder(candidate.get(), true) && !can_reorder_cur)
break;
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
break;
register_pressure.update(register_demand[candidate_idx]);
/* if current depends on candidate, add additional dependencies and continue */
bool can_move_down = true;
bool writes_exec = false;
for (const Definition& def : candidate->definitions) {
if (def.isTemp() && ctx.depends_on[def.tempId()])
can_move_down = false;
if (def.isFixed() && def.physReg() == exec)
writes_exec = true;
}
if (writes_exec)
break;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
continue;
}
bool register_pressure_unknown = false;
/* check if one of candidate's operands is killed by depending instruction */
for (const Operand& op : candidate->operands) {
if (op.isTemp() && ctx.depends_on[op.tempId()]) {
// FIXME: account for difference in register pressure
register_pressure_unknown = true;
}
}
if (register_pressure_unknown) {
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.depends_on[op.tempId()] = true;
}
continue;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = getLiveChanges(candidate);
const RegisterDemand temp = getTempRegisters(candidate);;
if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
break;
const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + temp;
if (new_demand.exceeds(ctx.max_registers))
break;
// TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure
/* move the candidate below the memory load */
move_element(block->instructions, candidate_idx, insert_idx);
/* update register pressure */
move_element(register_demand, candidate_idx, insert_idx);
for (int i = candidate_idx; i < insert_idx - 1; i++) {
register_demand[i] -= candidate_diff;
}
register_demand[insert_idx - 1] = new_demand;
register_pressure -= candidate_diff;
insert_idx--;
k++;
if (candidate_idx < ctx.last_SMEM_dep_idx)
ctx.last_SMEM_stall++;
}
/* create the initial set of values which depend on current */
std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
std::fill(ctx.RAR_dependencies.begin(), ctx.RAR_dependencies.end(), false);
for (const Definition& def : current->definitions) {
if (def.isTemp())
ctx.depends_on[def.tempId()] = true;
}
/* find the first instruction depending on current or find another VMEM */
insert_idx = idx;
moving_interaction = barrier_none;
moving_spill = false;
bool found_dependency = false;
/* second, check if we have instructions after current to move up */
for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
if (candidate->opcode == aco_opcode::p_logical_end)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
[](const Definition& def) {return def.isFixed() && def.physReg() == exec; });
if (writes_exec)
break;
/* check if candidate depends on current */
bool is_dependency = !can_reorder(candidate.get(), true) && !can_reorder_cur;
for (const Operand& op : candidate->operands) {
if (op.isTemp() && ctx.depends_on[op.tempId()]) {
is_dependency = true;
break;
}
}
if (moving_spill && is_spill_reload(candidate))
is_dependency = true;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
is_dependency = true;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (is_dependency) {
for (const Definition& def : candidate->definitions) {
if (def.isTemp())
ctx.depends_on[def.tempId()] = true;
}
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.RAR_dependencies[op.tempId()] = true;
}
if (!found_dependency) {
insert_idx = candidate_idx;
found_dependency = true;
/* init register pressure */
register_pressure = register_demand[insert_idx - 1];
continue;
}
}
/* update register pressure */
register_pressure.update(register_demand[candidate_idx - 1]);
if (is_dependency || !found_dependency)
continue;
assert(insert_idx != idx);
bool register_pressure_unknown = false;
/* check if candidate uses/kills an operand which is used by a dependency */
for (const Operand& op : candidate->operands) {
if (op.isTemp() && ctx.RAR_dependencies[op.tempId()])
register_pressure_unknown = true;
}
if (register_pressure_unknown) {
for (const Definition& def : candidate->definitions) {
if (def.isTemp())
ctx.RAR_dependencies[def.tempId()] = true;
}
for (const Operand& op : candidate->operands) {
if (op.isTemp())
ctx.RAR_dependencies[op.tempId()] = true;
}
continue;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = getLiveChanges(candidate);
const RegisterDemand temp = getTempRegisters(candidate);
if (RegisterDemand(register_pressure + candidate_diff).exceeds(ctx.max_registers))
break;
const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp;
if (new_demand.exceeds(ctx.max_registers))
break;
/* move the candidate above the insert_idx */
move_element(block->instructions, candidate_idx, insert_idx);
/* update register pressure */
move_element(register_demand, candidate_idx, insert_idx);
for (int i = insert_idx + 1; i <= candidate_idx; i++) {
register_demand[i] += candidate_diff;
}
register_demand[insert_idx] = new_demand;
register_pressure += candidate_diff;
insert_idx++;
k++;
}
}
void schedule_position_export(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = POS_EXP_WINDOW_SIZE;
int max_moves = POS_EXP_MAX_MOVES;
int16_t k = 0;
/* create the initial set of values which current depends on */
std::fill(ctx.depends_on.begin(), ctx.depends_on.end(), false);
for (unsigned i = 0; i < current->operands.size(); i++) {
if (current->operands[i].isTemp())
ctx.depends_on[current->operands[i].tempId()] = true;
}
/* maintain how many registers remain free when moving instructions */
RegisterDemand register_pressure = register_demand[idx];
/* first, check if we have instructions before current to move down */
int insert_idx = idx + 1;
int moving_interaction = barrier_none;
bool moving_spill = false;
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
/* break when encountering logical_start or barriers */
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (candidate->isVMEM() || candidate->format == Format::SMEM)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
register_pressure.update(register_demand[candidate_idx]);
/* if current depends on candidate, add additional dependencies and continue */
bool can_move_down = true;
bool writes_exec = false;
for (unsigned i = 0; i < candidate->definitions.size(); i++) {
if (candidate->definitions[i].isTemp() && ctx.depends_on[candidate->definitions[i].tempId()])
can_move_down = false;
if (candidate->definitions[i].isFixed() && candidate->definitions[i].physReg() == exec)
writes_exec = true;
}
if (writes_exec)
break;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
for (unsigned i = 0; i < candidate->operands.size(); i++) {
if (candidate->operands[i].isTemp())
ctx.depends_on[candidate->operands[i].tempId()] = true;
}
continue;
}
bool register_pressure_unknown = false;
/* check if one of candidate's operands is killed by depending instruction */
for (unsigned i = 0; i < candidate->operands.size(); i++) {
if (candidate->operands[i].isTemp() && ctx.depends_on[candidate->operands[i].tempId()]) {
// FIXME: account for difference in register pressure
register_pressure_unknown = true;
}
}
if (register_pressure_unknown) {
for (unsigned i = 0; i < candidate->operands.size(); i++) {
if (candidate->operands[i].isTemp())
ctx.depends_on[candidate->operands[i].tempId()] = true;
}
continue;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = getLiveChanges(candidate);
const RegisterDemand temp = getTempRegisters(candidate);;
if (RegisterDemand(register_pressure - candidate_diff).exceeds(ctx.max_registers))
break;
const RegisterDemand temp2 = getTempRegisters(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + temp;
if (new_demand.exceeds(ctx.max_registers))
break;
// TODO: we might want to look further to find a sequence of instructions to move down which doesn't exceed reg pressure
/* move the candidate below the export */
move_element(block->instructions, candidate_idx, insert_idx);
/* update register pressure */
move_element(register_demand, candidate_idx, insert_idx);
for (int i = candidate_idx; i < insert_idx - 1; i++) {
register_demand[i] -= candidate_diff;
}
register_demand[insert_idx - 1] = new_demand;
register_pressure -= candidate_diff;
insert_idx--;
k++;
}
}
void schedule_block(sched_ctx& ctx, Program *program, Block* block, live& live_vars)
{
ctx.last_SMEM_dep_idx = 0;
ctx.last_SMEM_stall = INT16_MIN;
/* go through all instructions and find memory loads */
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
Instruction* current = block->instructions[idx].get();
if (current->definitions.empty())
continue;
if (current->isVMEM())
schedule_VMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
if (current->format == Format::SMEM)
schedule_SMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
}
if ((program->stage & hw_vs) && block->index == program->blocks.size() - 1) {
/* Try to move position exports as far up as possible, to reduce register
* usage and because ISA reference guides say so. */
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
Instruction* current = block->instructions[idx].get();
if (current->format == Format::EXP) {
unsigned target = static_cast<Export_instruction*>(current)->dest;
if (target >= V_008DFC_SQ_EXP_POS && target < V_008DFC_SQ_EXP_PARAM)
schedule_position_export(ctx, block, live_vars.register_demand[block->index], current, idx);
}
}
}
/* resummarize the block's register demand */
block->register_demand = RegisterDemand();
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
block->register_demand.update(live_vars.register_demand[block->index][idx]);
}
}
void schedule_program(Program *program, live& live_vars)
{
sched_ctx ctx;
ctx.depends_on.resize(program->peekAllocationId());
ctx.RAR_dependencies.resize(program->peekAllocationId());
/* Allowing the scheduler to reduce the number of waves to as low as 5
* improves performance of Thrones of Britannia significantly and doesn't
* seem to hurt anything else. */
if (program->num_waves <= 5)
ctx.num_waves = program->num_waves;
else if (program->max_reg_demand.vgpr >= 32)
ctx.num_waves = 5;
else if (program->max_reg_demand.vgpr >= 28)
ctx.num_waves = 6;
else if (program->max_reg_demand.vgpr >= 24)
ctx.num_waves = 7;
else
ctx.num_waves = 8;
assert(ctx.num_waves > 0 && ctx.num_waves <= program->num_waves);
ctx.max_registers = { int16_t(((256 / ctx.num_waves) & ~3) - 2), int16_t(get_addr_sgpr_from_waves(program, ctx.num_waves))};
for (Block& block : program->blocks)
schedule_block(ctx, program, &block, live_vars);
/* update max_reg_demand and num_waves */
RegisterDemand new_demand;
for (Block& block : program->blocks) {
new_demand.update(block.register_demand);
}
update_vgpr_sgpr_demand(program, new_demand);
/* if enabled, this code asserts that register_demand is updated correctly */
#if 0
int prev_num_waves = program->num_waves;
const RegisterDemand prev_max_demand = program->max_reg_demand;
std::vector<RegisterDemand> demands(program->blocks.size());
for (unsigned j = 0; j < program->blocks.size(); j++) {
demands[j] = program->blocks[j].register_demand;
}
struct radv_nir_compiler_options options;
options.chip_class = program->chip_class;
live live_vars2 = aco::live_var_analysis(program, &options);
for (unsigned j = 0; j < program->blocks.size(); j++) {
Block &b = program->blocks[j];
for (unsigned i = 0; i < b.instructions.size(); i++)
assert(live_vars.register_demand[b.index][i] == live_vars2.register_demand[b.index][i]);
assert(b.register_demand == demands[j]);
}
assert(program->max_reg_demand == prev_max_demand);
assert(program->num_waves == prev_num_waves);
#endif
}
}