mesa/src/vulkan/anv_cmd_buffer.c

1427 lines
53 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
/** \file anv_cmd_buffer.c
*
* This file contains all of the stuff for emitting commands into a command
* buffer. This includes implementations of most of the vkCmd*
* entrypoints. This file is concerned entirely with state emission and
* not with the command buffer data structure itself. As far as this file
* is concerned, most of anv_cmd_buffer is magic.
*/
static void
anv_cmd_state_init(struct anv_cmd_state *state)
{
state->rs_state = NULL;
state->vp_state = NULL;
state->cb_state = NULL;
state->ds_state = NULL;
memset(&state->state_vf, 0, sizeof(state->state_vf));
memset(&state->descriptors, 0, sizeof(state->descriptors));
state->dirty = 0;
state->vb_dirty = 0;
state->descriptors_dirty = 0;
state->pipeline = NULL;
state->vp_state = NULL;
state->rs_state = NULL;
state->ds_state = NULL;
}
2015-07-29 22:05:06 +01:00
VkResult anv_CreateCommandBuffer(
VkDevice _device,
const VkCmdBufferCreateInfo* pCreateInfo,
VkCmdBuffer* pCmdBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_pool, pool, pCreateInfo->cmdPool);
struct anv_cmd_buffer *cmd_buffer;
VkResult result;
cmd_buffer = anv_device_alloc(device, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (cmd_buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->device = device;
result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
if (result != VK_SUCCESS)
goto fail;
anv_state_stream_init(&cmd_buffer->surface_state_stream,
&device->surface_state_block_pool);
anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
&device->dynamic_state_block_pool);
cmd_buffer->level = pCreateInfo->level;
cmd_buffer->opt_flags = 0;
anv_cmd_state_init(&cmd_buffer->state);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
*pCmdBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
2015-07-29 22:05:06 +01:00
return VK_SUCCESS;
fail: anv_device_free(device, cmd_buffer);
return result;
}
VkResult anv_DestroyCommandBuffer(
VkDevice _device,
VkCmdBuffer _cmd_buffer)
2015-07-29 22:05:06 +01:00
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, _cmd_buffer);
list_del(&cmd_buffer->pool_link);
anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
anv_state_stream_finish(&cmd_buffer->surface_state_stream);
anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
anv_device_free(device, cmd_buffer);
return VK_SUCCESS;
}
VkResult anv_ResetCommandBuffer(
VkCmdBuffer cmdBuffer,
VkCmdBufferResetFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
anv_cmd_state_init(&cmd_buffer->state);
return VK_SUCCESS;
2015-07-29 22:05:06 +01:00
}
void
anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_bo *scratch_bo = NULL;
cmd_buffer->state.scratch_size =
anv_block_pool_size(&device->scratch_block_pool);
if (cmd_buffer->state.scratch_size > 0)
scratch_bo = &device->scratch_block_pool.bo;
anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_BASE_ADDRESS,
.GeneralStateBaseAddress = { scratch_bo, 0 },
.GeneralStateMemoryObjectControlState = GEN8_MOCS,
.GeneralStateBaseAddressModifyEnable = true,
.GeneralStateBufferSize = 0xfffff,
.GeneralStateBufferSizeModifyEnable = true,
.SurfaceStateBaseAddress = { anv_cmd_buffer_current_surface_bo(cmd_buffer), 0 },
.SurfaceStateMemoryObjectControlState = GEN8_MOCS,
.SurfaceStateBaseAddressModifyEnable = true,
.DynamicStateBaseAddress = { &device->dynamic_state_block_pool.bo, 0 },
.DynamicStateMemoryObjectControlState = GEN8_MOCS,
.DynamicStateBaseAddressModifyEnable = true,
.DynamicStateBufferSize = 0xfffff,
.DynamicStateBufferSizeModifyEnable = true,
.IndirectObjectBaseAddress = { NULL, 0 },
.IndirectObjectMemoryObjectControlState = GEN8_MOCS,
.IndirectObjectBaseAddressModifyEnable = true,
.IndirectObjectBufferSize = 0xfffff,
.IndirectObjectBufferSizeModifyEnable = true,
.InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
.InstructionMemoryObjectControlState = GEN8_MOCS,
.InstructionBaseAddressModifyEnable = true,
.InstructionBufferSize = 0xfffff,
.InstructionBuffersizeModifyEnable = true);
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.TextureCacheInvalidationEnable = true);
}
VkResult anv_BeginCommandBuffer(
VkCmdBuffer cmdBuffer,
const VkCmdBufferBeginInfo* pBeginInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
cmd_buffer->opt_flags = pBeginInfo->flags;
if (cmd_buffer->level == VK_CMD_BUFFER_LEVEL_SECONDARY) {
cmd_buffer->state.framebuffer =
anv_framebuffer_from_handle(pBeginInfo->framebuffer);
cmd_buffer->state.pass =
anv_render_pass_from_handle(pBeginInfo->renderPass);
/* FIXME: We shouldn't be starting on the first subpass */
anv_cmd_buffer_begin_subpass(cmd_buffer,
&cmd_buffer->state.pass->subpasses[0]);
}
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
cmd_buffer->state.current_pipeline = UINT32_MAX;
return VK_SUCCESS;
}
VkResult anv_EndCommandBuffer(
VkCmdBuffer cmdBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
struct anv_device *device = cmd_buffer->device;
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
if (cmd_buffer->level == VK_CMD_BUFFER_LEVEL_PRIMARY) {
/* The algorithm used to compute the validate list is not threadsafe as
* it uses the bo->index field. We have to lock the device around it.
* Fortunately, the chances for contention here are probably very low.
*/
pthread_mutex_lock(&device->mutex);
anv_cmd_buffer_prepare_execbuf(cmd_buffer);
pthread_mutex_unlock(&device->mutex);
}
return VK_SUCCESS;
}
void anv_CmdBindPipeline(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
cmd_buffer->state.compute_pipeline = pipeline;
cmd_buffer->state.compute_dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY;
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
cmd_buffer->state.pipeline = pipeline;
cmd_buffer->state.vb_dirty |= pipeline->vb_used;
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY;
break;
default:
assert(!"invalid bind point");
break;
}
}
void anv_CmdBindDynamicViewportState(
VkCmdBuffer cmdBuffer,
VkDynamicViewportState dynamicViewportState)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_dynamic_vp_state, vp_state, dynamicViewportState);
cmd_buffer->state.vp_state = vp_state;
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_VP_DIRTY;
}
void anv_CmdBindDynamicRasterState(
VkCmdBuffer cmdBuffer,
VkDynamicRasterState dynamicRasterState)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_dynamic_rs_state, rs_state, dynamicRasterState);
cmd_buffer->state.rs_state = rs_state;
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_RS_DIRTY;
}
void anv_CmdBindDynamicColorBlendState(
VkCmdBuffer cmdBuffer,
VkDynamicColorBlendState dynamicColorBlendState)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_dynamic_cb_state, cb_state, dynamicColorBlendState);
cmd_buffer->state.cb_state = cb_state;
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_CB_DIRTY;
}
void anv_CmdBindDynamicDepthStencilState(
VkCmdBuffer cmdBuffer,
VkDynamicDepthStencilState dynamicDepthStencilState)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_dynamic_ds_state, ds_state, dynamicDepthStencilState);
cmd_buffer->state.ds_state = ds_state;
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_DS_DIRTY;
}
void anv_CmdBindDescriptorSets(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t setCount,
const VkDescriptorSet* pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* pDynamicOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
struct anv_descriptor_set_layout *set_layout;
assert(firstSet + setCount < MAX_SETS);
uint32_t dynamic_slot = 0;
for (uint32_t i = 0; i < setCount; i++) {
ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
set_layout = layout->set[firstSet + i].layout;
cmd_buffer->state.descriptors[firstSet + i].set = set;
assert(set_layout->num_dynamic_buffers <
ARRAY_SIZE(cmd_buffer->state.descriptors[0].dynamic_offsets));
memcpy(cmd_buffer->state.descriptors[firstSet + i].dynamic_offsets,
pDynamicOffsets + dynamic_slot,
set_layout->num_dynamic_buffers * sizeof(*pDynamicOffsets));
cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
dynamic_slot += set_layout->num_dynamic_buffers;
}
}
void anv_CmdBindIndexBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
static const uint32_t vk_to_gen_index_type[] = {
[VK_INDEX_TYPE_UINT16] = INDEX_WORD,
[VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
};
struct GEN8_3DSTATE_VF vf = {
GEN8_3DSTATE_VF_header,
.CutIndex = (indexType == VK_INDEX_TYPE_UINT16) ? UINT16_MAX : UINT32_MAX,
};
GEN8_3DSTATE_VF_pack(NULL, cmd_buffer->state.state_vf, &vf);
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_INDEX_BUFFER_DIRTY;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_INDEX_BUFFER,
.IndexFormat = vk_to_gen_index_type[indexType],
.MemoryObjectControlState = GEN8_MOCS,
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset);
}
void anv_CmdBindVertexBuffers(
VkCmdBuffer cmdBuffer,
uint32_t startBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline. */
assert(startBinding + bindingCount < MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
vb[startBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
vb[startBinding + i].offset = pOffsets[i];
cmd_buffer->state.vb_dirty |= 1 << (startBinding + i);
}
}
2015-07-29 22:05:06 +01:00
static VkResult
cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
unsigned stage, struct anv_state *bt_state)
2015-07-29 22:05:06 +01:00
{
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
struct anv_subpass *subpass = cmd_buffer->state.subpass;
struct anv_pipeline_layout *layout;
uint32_t attachments, bias, size;
if (stage == VK_SHADER_STAGE_COMPUTE)
layout = cmd_buffer->state.compute_pipeline->layout;
else
layout = cmd_buffer->state.pipeline->layout;
if (stage == VK_SHADER_STAGE_FRAGMENT) {
bias = MAX_RTS;
attachments = subpass->color_count;
} else {
bias = 0;
attachments = 0;
}
2015-07-29 22:05:06 +01:00
/* This is a little awkward: layout can be NULL but we still have to
* allocate and set a binding table for the PS stage for render
* targets. */
uint32_t surface_count = layout ? layout->stage[stage].surface_count : 0;
2015-07-29 22:05:06 +01:00
if (attachments + surface_count == 0)
return VK_SUCCESS;
2015-07-29 22:05:06 +01:00
size = (bias + surface_count) * sizeof(uint32_t);
*bt_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer, size, 32);
uint32_t *bt_map = bt_state->map;
2015-07-29 22:05:06 +01:00
if (bt_state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2015-07-29 22:05:06 +01:00
/* This is highly annoying. The Vulkan spec puts the depth-stencil
* attachments in with the color attachments. Unfortunately, thanks to
* other aspects of the API, we cana't really saparate them before this
* point. Therefore, we have to walk all of the attachments but only
* put the color attachments into the binding table.
*/
for (uint32_t a = 0; a < attachments; a++) {
const struct anv_attachment_view *attachment =
fb->attachments[subpass->color_attachments[a]];
2015-07-29 22:05:06 +01:00
assert(attachment->attachment_type == ANV_ATTACHMENT_VIEW_TYPE_COLOR);
const struct anv_color_attachment_view *view =
(const struct anv_color_attachment_view *)attachment;
2015-07-29 22:05:06 +01:00
struct anv_state state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer, 64, 64);
2015-07-29 22:05:06 +01:00
if (state.map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2015-07-29 22:05:06 +01:00
memcpy(state.map, view->view.surface_state.map, 64);
/* The address goes in dwords 8 and 9 of the SURFACE_STATE */
*(uint64_t *)(state.map + 8 * 4) =
anv_reloc_list_add(anv_cmd_buffer_current_surface_relocs(cmd_buffer),
cmd_buffer->device,
state.offset + 8 * 4,
view->view.bo, view->view.offset);
bt_map[a] = state.offset;
}
if (layout == NULL)
return VK_SUCCESS;
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_binding *d = &cmd_buffer->state.descriptors[set];
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
struct anv_descriptor_slot *surface_slots =
set_layout->stage[stage].surface_start;
uint32_t start = bias + layout->set[set].surface_start[stage];
for (uint32_t b = 0; b < set_layout->stage[stage].surface_count; b++) {
struct anv_surface_view *view =
d->set->descriptors[surface_slots[b].index].view;
if (!view)
continue;
struct anv_state state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer, 64, 64);
if (state.map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
uint32_t offset;
if (surface_slots[b].dynamic_slot >= 0) {
uint32_t dynamic_offset =
d->dynamic_offsets[surface_slots[b].dynamic_slot];
offset = view->offset + dynamic_offset;
anv_fill_buffer_surface_state(state.map, view->format, offset,
view->range - dynamic_offset);
} else {
offset = view->offset;
memcpy(state.map, view->surface_state.map, 64);
}
/* The address goes in dwords 8 and 9 of the SURFACE_STATE */
*(uint64_t *)(state.map + 8 * 4) =
anv_reloc_list_add(anv_cmd_buffer_current_surface_relocs(cmd_buffer),
cmd_buffer->device,
state.offset + 8 * 4,
view->bo, offset);
bt_map[start + b] = state.offset;
}
}
return VK_SUCCESS;
}
static VkResult
cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
unsigned stage, struct anv_state *state)
{
struct anv_pipeline_layout *layout;
uint32_t sampler_count;
if (stage == VK_SHADER_STAGE_COMPUTE)
layout = cmd_buffer->state.compute_pipeline->layout;
else
layout = cmd_buffer->state.pipeline->layout;
sampler_count = layout ? layout->stage[stage].sampler_count : 0;
if (sampler_count == 0)
return VK_SUCCESS;
uint32_t size = sampler_count * 16;
*state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
if (state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_binding *d = &cmd_buffer->state.descriptors[set];
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
struct anv_descriptor_slot *sampler_slots =
set_layout->stage[stage].sampler_start;
uint32_t start = layout->set[set].sampler_start[stage];
for (uint32_t b = 0; b < set_layout->stage[stage].sampler_count; b++) {
struct anv_sampler *sampler =
d->set->descriptors[sampler_slots[b].index].sampler;
if (!sampler)
continue;
memcpy(state->map + (start + b) * 16,
sampler->state, sizeof(sampler->state));
}
}
return VK_SUCCESS;
}
static VkResult
flush_descriptor_set(struct anv_cmd_buffer *cmd_buffer, uint32_t stage)
{
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = cmd_buffer_emit_samplers(cmd_buffer, stage, &samplers);
if (result != VK_SUCCESS)
return result;
result = cmd_buffer_emit_binding_table(cmd_buffer, stage, &surfaces);
if (result != VK_SUCCESS)
return result;
static const uint32_t sampler_state_opcodes[] = {
[VK_SHADER_STAGE_VERTEX] = 43,
[VK_SHADER_STAGE_TESS_CONTROL] = 44, /* HS */
[VK_SHADER_STAGE_TESS_EVALUATION] = 45, /* DS */
[VK_SHADER_STAGE_GEOMETRY] = 46,
[VK_SHADER_STAGE_FRAGMENT] = 47,
[VK_SHADER_STAGE_COMPUTE] = 0,
};
static const uint32_t binding_table_opcodes[] = {
[VK_SHADER_STAGE_VERTEX] = 38,
[VK_SHADER_STAGE_TESS_CONTROL] = 39,
[VK_SHADER_STAGE_TESS_EVALUATION] = 40,
[VK_SHADER_STAGE_GEOMETRY] = 41,
[VK_SHADER_STAGE_FRAGMENT] = 42,
[VK_SHADER_STAGE_COMPUTE] = 0,
};
if (samplers.alloc_size > 0) {
anv_batch_emit(&cmd_buffer->batch,
GEN8_3DSTATE_SAMPLER_STATE_POINTERS_VS,
._3DCommandSubOpcode = sampler_state_opcodes[stage],
.PointertoVSSamplerState = samplers.offset);
}
if (surfaces.alloc_size > 0) {
anv_batch_emit(&cmd_buffer->batch,
GEN8_3DSTATE_BINDING_TABLE_POINTERS_VS,
._3DCommandSubOpcode = binding_table_opcodes[stage],
.PointertoVSBindingTable = surfaces.offset);
}
return VK_SUCCESS;
}
static void
flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
{
uint32_t s, dirty = cmd_buffer->state.descriptors_dirty &
cmd_buffer->state.pipeline->active_stages;
VkResult result = VK_SUCCESS;
for_each_bit(s, dirty) {
result = flush_descriptor_set(cmd_buffer, s);
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = anv_cmd_buffer_new_surface_state_bo(cmd_buffer);
assert(result == VK_SUCCESS);
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
/* Re-emit all active binding tables */
for_each_bit(s, cmd_buffer->state.pipeline->active_stages) {
result = flush_descriptor_set(cmd_buffer, s);
/* It had better succeed this time */
assert(result == VK_SUCCESS);
}
}
cmd_buffer->state.descriptors_dirty &= ~cmd_buffer->state.pipeline->active_stages;
}
static struct anv_state
anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t dwords, uint32_t alignment)
{
struct anv_state state;
state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
dwords * 4, alignment);
memcpy(state.map, a, dwords * 4);
VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, dwords * 4));
return state;
}
static struct anv_state
anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t *b,
uint32_t dwords, uint32_t alignment)
{
struct anv_state state;
uint32_t *p;
state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
dwords * 4, alignment);
p = state.map;
for (uint32_t i = 0; i < dwords; i++)
p[i] = a[i] | b[i];
VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
return state;
}
static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = cmd_buffer_emit_samplers(cmd_buffer,
VK_SHADER_STAGE_COMPUTE, &samplers);
if (result != VK_SUCCESS)
return result;
result = cmd_buffer_emit_binding_table(cmd_buffer,
VK_SHADER_STAGE_COMPUTE, &surfaces);
if (result != VK_SUCCESS)
return result;
struct GEN8_INTERFACE_DESCRIPTOR_DATA desc = {
.KernelStartPointer = pipeline->cs_simd,
.KernelStartPointerHigh = 0,
.BindingTablePointer = surfaces.offset,
.BindingTableEntryCount = 0,
.SamplerStatePointer = samplers.offset,
.SamplerCount = 0,
.NumberofThreadsinGPGPUThreadGroup = 0 /* FIXME: Really? */
};
uint32_t size = GEN8_INTERFACE_DESCRIPTOR_DATA_length * sizeof(uint32_t);
struct anv_state state =
anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);
GEN8_INTERFACE_DESCRIPTOR_DATA_pack(NULL, state.map, &desc);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
.InterfaceDescriptorTotalLength = size,
.InterfaceDescriptorDataStartAddress = state.offset);
return VK_SUCCESS;
}
static void
anv_cmd_buffer_flush_compute_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
VkResult result;
assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
if (cmd_buffer->state.current_pipeline != GPGPU) {
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
.PipelineSelection = GPGPU);
cmd_buffer->state.current_pipeline = GPGPU;
}
if (cmd_buffer->state.compute_dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
(cmd_buffer->state.compute_dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)) {
result = flush_compute_descriptor_set(cmd_buffer);
assert(result == VK_SUCCESS);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE;
}
cmd_buffer->state.compute_dirty = 0;
}
static void
anv_cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t *p;
uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
if (cmd_buffer->state.current_pipeline != _3D) {
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
.PipelineSelection = _3D);
cmd_buffer->state.current_pipeline = _3D;
}
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GEN8_3DSTATE_VERTEX_BUFFERS);
uint32_t vb, i = 0;
for_each_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GEN8_VERTEX_BUFFER_STATE state = {
.VertexBufferIndex = vb,
.MemoryObjectControlState = GEN8_MOCS,
.AddressModifyEnable = true,
.BufferPitch = pipeline->binding_stride[vb],
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset
};
GEN8_VERTEX_BUFFER_STATE_pack(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
if (cmd_buffer->state.dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY) {
/* If somebody compiled a pipeline after starting a command buffer the
* scratch bo may have grown since we started this cmd buffer (and
* emitted STATE_BASE_ADDRESS). If we're binding that pipeline now,
* reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */
if (cmd_buffer->state.scratch_size < pipeline->total_scratch)
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
}
if (cmd_buffer->state.descriptors_dirty)
flush_descriptor_sets(cmd_buffer);
if (cmd_buffer->state.dirty & ANV_CMD_BUFFER_VP_DIRTY) {
struct anv_dynamic_vp_state *vp_state = cmd_buffer->state.vp_state;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SCISSOR_STATE_POINTERS,
.ScissorRectPointer = vp_state->scissor.offset);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
.CCViewportPointer = vp_state->cc_vp.offset);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
.SFClipViewportPointer = vp_state->sf_clip_vp.offset);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_RS_DIRTY)) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.rs_state->state_sf,
pipeline->state_sf);
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.rs_state->state_raster,
pipeline->state_raster);
}
if (cmd_buffer->state.ds_state &&
(cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_DS_DIRTY))) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.ds_state->state_wm_depth_stencil,
pipeline->state_wm_depth_stencil);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_CB_DIRTY |
ANV_CMD_BUFFER_DS_DIRTY)) {
struct anv_state state;
if (cmd_buffer->state.ds_state == NULL)
state = anv_cmd_buffer_emit_dynamic(cmd_buffer,
cmd_buffer->state.cb_state->state_color_calc,
GEN8_COLOR_CALC_STATE_length, 64);
else if (cmd_buffer->state.cb_state == NULL)
state = anv_cmd_buffer_emit_dynamic(cmd_buffer,
cmd_buffer->state.ds_state->state_color_calc,
GEN8_COLOR_CALC_STATE_length, 64);
else
state = anv_cmd_buffer_merge_dynamic(cmd_buffer,
cmd_buffer->state.ds_state->state_color_calc,
cmd_buffer->state.cb_state->state_color_calc,
GEN8_COLOR_CALC_STATE_length, 64);
anv_batch_emit(&cmd_buffer->batch,
GEN8_3DSTATE_CC_STATE_POINTERS,
.ColorCalcStatePointer = state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_INDEX_BUFFER_DIRTY)) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.state_vf, pipeline->state_vf);
}
cmd_buffer->state.vb_dirty &= ~vb_emit;
cmd_buffer->state.dirty = 0;
}
void anv_CmdDraw(
VkCmdBuffer cmdBuffer,
uint32_t firstVertex,
uint32_t vertexCount,
uint32_t firstInstance,
uint32_t instanceCount)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
anv_cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.VertexAccessType = SEQUENTIAL,
.VertexCountPerInstance = vertexCount,
.StartVertexLocation = firstVertex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = 0);
}
void anv_CmdDrawIndexed(
VkCmdBuffer cmdBuffer,
uint32_t firstIndex,
uint32_t indexCount,
int32_t vertexOffset,
uint32_t firstInstance,
uint32_t instanceCount)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
anv_cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.VertexAccessType = RANDOM,
.VertexCountPerInstance = indexCount,
.StartVertexLocation = firstIndex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = vertexOffset);
}
static void
anv_batch_lrm(struct anv_batch *batch,
uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
}
static void
anv_batch_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_IMM,
.RegisterOffset = reg,
.DataDWord = imm);
}
/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET 0x2420
#define GEN7_3DPRIM_START_VERTEX 0x2430
#define GEN7_3DPRIM_VERTEX_COUNT 0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
void anv_CmdDrawIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
anv_cmd_buffer_flush_state(cmd_buffer);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
anv_batch_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.IndirectParameterEnable = true,
.VertexAccessType = SEQUENTIAL);
}
void anv_CmdDrawIndexedIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
anv_cmd_buffer_flush_state(cmd_buffer);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.IndirectParameterEnable = true,
.VertexAccessType = RANDOM);
}
void anv_CmdDispatch(
VkCmdBuffer cmdBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
anv_cmd_buffer_flush_compute_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_GPGPU_WALKER,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max,
.ThreadGroupIDXDimension = x,
.ThreadGroupIDYDimension = y,
.ThreadGroupIDZDimension = z,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_STATE_FLUSH);
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
void anv_CmdDispatchIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
anv_cmd_buffer_flush_compute_state(cmd_buffer);
anv_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
anv_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
anv_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
anv_batch_emit(&cmd_buffer->batch, GEN8_GPGPU_WALKER,
.IndirectParameterEnable = true,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_STATE_FLUSH);
}
void anv_CmdSetEvent(
VkCmdBuffer cmdBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
stub();
}
void anv_CmdResetEvent(
VkCmdBuffer cmdBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
stub();
}
void anv_CmdWaitEvents(
VkCmdBuffer cmdBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
uint32_t memBarrierCount,
const void* const* ppMemBarriers)
{
stub();
}
void anv_CmdPipelineBarrier(
VkCmdBuffer cmdBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
VkBool32 byRegion,
uint32_t memBarrierCount,
const void* const* ppMemBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
uint32_t b, *dw;
struct GEN8_PIPE_CONTROL cmd = {
GEN8_PIPE_CONTROL_header,
.PostSyncOperation = NoWrite,
};
/* XXX: I think waitEvent is a no-op on our HW. We should verify that. */
if (anv_clear_mask(&srcStageMask, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT)) {
/* This is just what PIPE_CONTROL does */
}
if (anv_clear_mask(&srcStageMask,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_TESS_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESS_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT)) {
cmd.StallAtPixelScoreboard = true;
}
if (anv_clear_mask(&srcStageMask,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_TRANSITION_BIT)) {
cmd.CommandStreamerStallEnable = true;
}
if (anv_clear_mask(&srcStageMask, VK_PIPELINE_STAGE_HOST_BIT)) {
anv_finishme("VK_PIPE_EVENT_CPU_SIGNAL_BIT");
}
/* On our hardware, all stages will wait for execution as needed. */
(void)destStageMask;
/* We checked all known VkPipeEventFlags. */
anv_assert(srcStageMask == 0);
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better
* but right now that's all the hardware allows for in most areas.
*/
VkMemoryOutputFlags out_flags = 0;
VkMemoryInputFlags in_flags = 0;
for (uint32_t i = 0; i < memBarrierCount; i++) {
const struct anv_common *common = ppMemBarriers[i];
switch (common->sType) {
case VK_STRUCTURE_TYPE_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
case VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkBufferMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
case VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkImageMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
default:
unreachable("Invalid memory barrier type");
}
}
for_each_bit(b, out_flags) {
switch ((VkMemoryOutputFlags)(1 << b)) {
case VK_MEMORY_OUTPUT_HOST_WRITE_BIT:
break; /* FIXME: Little-core systems */
case VK_MEMORY_OUTPUT_SHADER_WRITE_BIT:
cmd.DCFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT:
cmd.RenderTargetCacheFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT:
cmd.DepthCacheFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_TRANSFER_BIT:
cmd.RenderTargetCacheFlushEnable = true;
cmd.DepthCacheFlushEnable = true;
break;
default:
unreachable("Invalid memory output flag");
}
}
for_each_bit(b, out_flags) {
switch ((VkMemoryInputFlags)(1 << b)) {
case VK_MEMORY_INPUT_HOST_READ_BIT:
break; /* FIXME: Little-core systems */
case VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT:
case VK_MEMORY_INPUT_INDEX_FETCH_BIT:
case VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT:
cmd.VFCacheInvalidationEnable = true;
break;
case VK_MEMORY_INPUT_UNIFORM_READ_BIT:
cmd.ConstantCacheInvalidationEnable = true;
/* fallthrough */
case VK_MEMORY_INPUT_SHADER_READ_BIT:
cmd.DCFlushEnable = true;
cmd.TextureCacheInvalidationEnable = true;
break;
case VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT:
case VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT:
break; /* XXX: Hunh? */
case VK_MEMORY_INPUT_TRANSFER_BIT:
cmd.TextureCacheInvalidationEnable = true;
break;
}
}
dw = anv_batch_emit_dwords(&cmd_buffer->batch, GEN8_PIPE_CONTROL_length);
GEN8_PIPE_CONTROL_pack(&cmd_buffer->batch, dw, &cmd);
}
void anv_CmdPushConstants(
VkCmdBuffer cmdBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t start,
uint32_t length,
const void* values)
{
stub();
}
static void
anv_cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_subpass *subpass = cmd_buffer->state.subpass;
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct anv_depth_stencil_view *view;
static const struct anv_depth_stencil_view null_view =
{ .depth_format = D16_UNORM, .depth_stride = 0, .stencil_stride = 0 };
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
const struct anv_attachment_view *aview =
fb->attachments[subpass->depth_stencil_attachment];
assert(aview->attachment_type == ANV_ATTACHMENT_VIEW_TYPE_DEPTH_STENCIL);
view = (const struct anv_depth_stencil_view *)aview;
} else {
view = &null_view;
}
/* FIXME: Implement the PMA stall W/A */
/* FIXME: Width and Height are wrong */
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DEPTH_BUFFER,
.SurfaceType = SURFTYPE_2D,
.DepthWriteEnable = view->depth_stride > 0,
.StencilWriteEnable = view->stencil_stride > 0,
.HierarchicalDepthBufferEnable = false,
.SurfaceFormat = view->depth_format,
.SurfacePitch = view->depth_stride > 0 ? view->depth_stride - 1 : 0,
.SurfaceBaseAddress = { view->bo, view->depth_offset },
.Height = cmd_buffer->state.framebuffer->height - 1,
.Width = cmd_buffer->state.framebuffer->width - 1,
.LOD = 0,
.Depth = 1 - 1,
.MinimumArrayElement = 0,
.DepthBufferObjectControlState = GEN8_MOCS,
.RenderTargetViewExtent = 1 - 1,
.SurfaceQPitch = view->depth_qpitch >> 2);
/* Disable hierarchial depth buffers. */
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_HIER_DEPTH_BUFFER);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STENCIL_BUFFER,
.StencilBufferEnable = view->stencil_stride > 0,
.StencilBufferObjectControlState = GEN8_MOCS,
.SurfacePitch = view->stencil_stride > 0 ? view->stencil_stride - 1 : 0,
.SurfaceBaseAddress = { view->bo, view->stencil_offset },
.SurfaceQPitch = view->stencil_qpitch >> 2);
/* Clear the clear params. */
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_CLEAR_PARAMS);
}
void
anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
anv_cmd_buffer_emit_depth_stencil(cmd_buffer);
}
void anv_CmdBeginRenderPass(
VkCmdBuffer cmdBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkRenderPassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
const VkRect2D *render_area = &pRenderPassBegin->renderArea;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DRAWING_RECTANGLE,
.ClippedDrawingRectangleYMin = render_area->offset.y,
.ClippedDrawingRectangleXMin = render_area->offset.x,
.ClippedDrawingRectangleYMax =
render_area->offset.y + render_area->extent.height - 1,
.ClippedDrawingRectangleXMax =
render_area->offset.x + render_area->extent.width - 1,
.DrawingRectangleOriginY = 0,
.DrawingRectangleOriginX = 0);
anv_cmd_buffer_clear_attachments(cmd_buffer, pass,
pRenderPassBegin->pAttachmentClearValues);
anv_cmd_buffer_begin_subpass(cmd_buffer, pass->subpasses);
}
void anv_CmdNextSubpass(
VkCmdBuffer cmdBuffer,
VkRenderPassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
assert(cmd_buffer->level == VK_CMD_BUFFER_LEVEL_PRIMARY);
anv_cmd_buffer_begin_subpass(cmd_buffer, cmd_buffer->state.subpass + 1);
}
void anv_CmdEndRenderPass(
VkCmdBuffer cmdBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
/* Emit a flushing pipe control at the end of a pass. This is kind of a
* hack but it ensures that render targets always actually get written.
* Eventually, we should do flushing based on image format transitions
* or something of that nature.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.PostSyncOperation = NoWrite,
.RenderTargetCacheFlushEnable = true,
.InstructionCacheInvalidateEnable = true,
.DepthCacheFlushEnable = true,
.VFCacheInvalidationEnable = true,
.TextureCacheInvalidationEnable = true,
.CommandStreamerStallEnable = true);
}
void anv_CmdExecuteCommands(
VkCmdBuffer cmdBuffer,
uint32_t cmdBuffersCount,
const VkCmdBuffer* pCmdBuffers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, primary, cmdBuffer);
assert(primary->level == VK_CMD_BUFFER_LEVEL_PRIMARY);
anv_assert(primary->state.subpass == &primary->state.pass->subpasses[0]);
for (uint32_t i = 0; i < cmdBuffersCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->level == VK_CMD_BUFFER_LEVEL_SECONDARY);
anv_cmd_buffer_add_secondary(primary, secondary);
}
}
VkResult anv_CreateCommandPool(
VkDevice _device,
const VkCmdPoolCreateInfo* pCreateInfo,
VkCmdPool* pCmdPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_cmd_pool *pool;
pool = anv_device_alloc(device, sizeof(*pool), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (pool == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
list_inithead(&pool->cmd_buffers);
*pCmdPool = anv_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
VkResult anv_DestroyCommandPool(
VkDevice _device,
VkCmdPool cmdPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_pool, pool, cmdPool);
anv_ResetCommandPool(_device, cmdPool, 0);
anv_device_free(device, pool);
return VK_SUCCESS;
}
VkResult anv_ResetCommandPool(
VkDevice device,
VkCmdPool cmdPool,
VkCmdPoolResetFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_pool, pool, cmdPool);
list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
anv_DestroyCommandBuffer(device, anv_cmd_buffer_to_handle(cmd_buffer));
}
return VK_SUCCESS;
}