mesa/src/glx/x11/indirect_vertex_array.c

2107 lines
58 KiB
C
Raw Normal View History

/*
* (C) Copyright IBM Corporation 2004, 2005
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* IBM,
* AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <inttypes.h>
#include <assert.h>
#include <string.h>
#include "glxclient.h"
#include "indirect.h"
#include <GL/glxproto.h>
#include "glxextensions.h"
#include "indirect_vertex_array.h"
#define __GLX_PAD(n) (((n)+3) & ~3)
/**
* \file indirect_vertex_array.c
* Implement GLX protocol for vertex arrays and vertex buffer objects.
*
* The most important function in this fill is \c fill_array_info_cache.
* The \c array_state_vector contains a cache of the ARRAY_INFO data sent
* in the DrawArrays protocol. Certain operations, such as enabling or
* disabling an array, can invalidate this cache. \c fill_array_info_cache
* fills-in this data. Additionally, it examines the enabled state and
* other factors to determine what "version" of DrawArrays protocoal can be
* used.
*
* Current, only two versions of DrawArrays protocol are implemented. The
* first version is the "none" protocol. This is the fallback when the
* server does not support GL 1.1 / EXT_vertex_arrays. It is implemented
* by sending batches of immediate mode commands that are equivalent to the
* DrawArrays protocol.
*
* The other protocol that is currently implemented is the "old" protocol.
* This is the GL 1.1 DrawArrays protocol. The only difference between GL
* 1.1 and EXT_vertex_arrays is the opcode used for the DrawArrays command.
* This protocol is called "old" because the ARB is in the process of
* defining a new protocol, which will probably be called wither "new" or
* "vbo", to support multiple texture coordinate arrays, generic attributes,
* and vertex buffer objects.
*
* \author Ian Romanick <idr@us.ibm.com>
*/
/**
* State descriptor for a single array of vertex data.
*/
struct array_state {
/**
* Pointer to the application supplied data.
*/
const void * data;
/**
* Enum representing the type of the application supplied data.
*/
GLenum data_type;
/**
* Stride value supplied by the application. This value is not used
* internally. It is only kept so that it can be queried by the
* application using glGet*v.
*/
GLsizei user_stride;
/**
* Calculated size, in bytes, of a single element in the array. This
* is calculated based on \c count and the size of the data type
* represented by \c data_type.
*/
GLsizei element_size;
/**
* Actual byte-stride from one element to the next. This value will
* be equal to either \c user_stride or \c element_stride.
*/
GLsizei true_stride;
/**
* Number of data values in each element.
*/
GLint count;
/**
* "Normalized" data is on the range [0,1] (unsigned) or [-1,1] (signed).
* This is used for mapping integral types to floating point types.
*/
GLboolean normalized;
/**
* Pre-calculated GLX protocol command header.
*/
uint32_t header[2];
/**
* Size of the header data. For simple data, like glColorPointerfv,
* this is 4. For complex data that requires either a count (e.g.,
* glWeightfvARB), an index (e.g., glVertexAttrib1fvARB), or a
* selector enum (e.g., glMultiTexCoord2fv) this is 8.
*/
unsigned header_size;
/**
* Set to \c GL_TRUE if this array is enabled. Otherwise, it is set
* to \c GL_FALSE.
*/
GLboolean enabled;
/**
* For multi-arrayed data (e.g., texture coordinates, generic vertex
* program attributes, etc.), this specifies which array this is.
*/
unsigned index;
/**
* Per-array-type key. For most arrays, this will be the GL enum for
* that array (e.g., GL_VERTEX_ARRAY for vertex data, GL_NORMAL_ARRAY
* for normal data, GL_TEXTURE_COORD_ARRAY for texture coordinate data,
* etc.).
*/
GLenum key;
/**
* If this array can be used with the "classic" \c glDrawArrays protocol,
* this is set to \c GL_TRUE. Otherwise, it is set to \c GL_FALSE.
*/
GLboolean old_DrawArrays_possible;
};
/**
* Array state that is pushed / poped by \c glPushClientAttrib and
* \c glPopClientAttrib.
*/
struct array_stack_state {
/**
* Pointer to the application supplied data.
*/
const void * data;
/**
* Enum representing the type of the application supplied data.
*/
GLenum data_type;
/**
* Stride value supplied by the application. This value is not used
* internally. It is only kept so that it can be queried by the
* application using glGet*v.
*/
GLsizei user_stride;
/**
* Number of data values in each element.
*/
GLint count;
/**
* Per-array-type key. For most arrays, this will be the GL enum for
* that array (e.g., GL_VERTEX_ARRAY for vertex data, GL_NORMAL_ARRAY
* for normal data, GL_TEXTURE_COORD_ARRAY for texture coordinate data,
* etc.).
*/
GLenum key;
/**
* For multi-arrayed data (e.g., texture coordinates, generic vertex
* program attributes, etc.), this specifies which array this is.
*/
unsigned index;
/**
* Set to \c GL_TRUE if this array is enabled. Otherwise, it is set
* to \c GL_FALSE.
*/
GLboolean enabled;
};
/**
* Collection of all the vertex array state.
*/
struct array_state_vector {
/**
* Number of arrays tracked by \c ::arrays.
*/
size_t num_arrays;
/**
* Array of vertex array state. This array contains all of the valid
* vertex arrays. If a vertex array isn't in this array, then it isn't
* valid. For example, if an implementation does not support
* EXT_fog_coord, there won't be a GL_FOG_COORD_ARRAY entry in this
* array.
*/
struct array_state * arrays;
/**
* Number of currently enabled arrays. The value of this field is
* only valid if \c array_info_cache_valid is true.
*/
size_t enabled_array_count;
/**
* \name ARRAY_INFO cache.
*
* These fields track the state of the ARRAY_INFO cache. The
* \c array_info_cache_size is the size of the actual data stored in
* \c array_info_cache. \c array_info_cache_buffer_size is the size of
* the buffer. This will always be greater than or equal to
* \c array_info_cache_size.
*
* \c large_header doesn't completely belong in this group. This is a
* pointer to a buffer to hold the header information for DrawArrays in
* a RenderLarge command. This buffer is immediately before
* \c array_info_cache. The idea is that the header data will be written
* to \c large_header and a single call to \c __glXSendLargeChunk can be
* made to send the header and the ARRAY_INFO data.
*
* \note
* \c array_info_cache_size and \c array_info_cache_buffer_size do
* NOT include the size of \c large_header.
*/
/*@{*/
size_t array_info_cache_size;
size_t array_info_cache_buffer_size;
void * array_info_cache;
GLubyte * large_header;
/*@}*/
/**
* Is the cache of ARRAY_INFO data valid? The cache can become invalid
* when one of several state changes occur. Among these chages are
* modifying the array settings for an enabled array and enabling /
* disabling an array.
*/
GLboolean array_info_cache_valid;
/**
* Is it possible to use the GL 1.1 / EXT_vertex_arrays protocol? Use
* of this protocol is disabled with really old servers (i.e., servers
* that don't support GL 1.1 or EXT_vertex_arrays) or when an environment
* variable is set.
*
* \todo
* GL 1.1 and EXT_vertex_arrays use identical protocol, but have different
* opcodes for \c glDrawArrays. For servers that advertise one or the
* other, there should be a way to select which opcode to use.
*/
GLboolean old_DrawArrays_possible;
/**
* Is it possible to use the new GL X.X / ARB_vertex_buffer_object
* protocol?
*
* \todo
* This protocol has not yet been defined by the ARB, but is currently a
* work in progress. This field is a place-holder.
*/
GLboolean new_DrawArrays_possible;
/**
* Active texture unit set by \c glClientActiveTexture.
*
* \sa __glXGetActiveTextureUnit
*/
unsigned active_texture_unit;
/**
* Number of supported texture units. Even if ARB_multitexture /
* GL 1.3 are not supported, this will be at least 1. When multitexture
* is supported, this will be the value queried by calling
* \c glGetIntegerv with \c GL_MAX_TEXTURE_UNITS.
*
* \todo
* Investigate if this should be the value of \c GL_MAX_TEXTURE_COORDS
* instead (if GL 2.0 / ARB_fragment_shader / ARB_fragment_program /
* NV_fragment_program are supported).
*/
unsigned num_texture_units;
/**
* Number of generic vertex program attribs. If GL_ARB_vertex_program
* is not supported, this will be zero. Otherwise it will be the value
* queries by calling \c glGetProgramiv with \c GL_VERTEX_PROGRAM_ARB
* and \c GL_MAX_PROGRAM_ATTRIBS_ARB.
*/
unsigned num_vertex_program_attribs;
/**
* \n Methods for implementing various GL functions.
*
* These method pointers are only valid \c array_info_cache_valid is set.
* When each function starts, it much check \c array_info_cache_valid.
* If it is not set, it must call \c fill_array_info_cache and call
* the new method.
*
* \sa fill_array_info_cache
*
* \todo
* Write code to plug these functions directly into the dispatch table.
*/
/*@{*/
void (*DrawArrays)( GLenum, GLint, GLsizei );
void (*DrawElements)( GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices );
/*@}*/
struct array_stack_state * stack;
unsigned active_texture_unit_stack[ __GL_CLIENT_ATTRIB_STACK_DEPTH ];
unsigned stack_index;
};
static void emit_DrawArrays_none( GLenum mode, GLint first, GLsizei count );
static void emit_DrawArrays_old ( GLenum mode, GLint first, GLsizei count );
static void emit_DrawElements_none( GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices );
static void emit_DrawElements_old ( GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices );
static GLubyte * emit_element_none( GLubyte * dst,
const struct array_state_vector * arrays, unsigned index );
static GLubyte * emit_element_old( GLubyte * dst,
const struct array_state_vector * arrays, unsigned index );
static struct array_state * get_array_entry(
const struct array_state_vector * arrays, GLenum key, unsigned index );
static void fill_array_info_cache( struct array_state_vector * arrays );
static GLboolean validate_mode(__GLXcontext *gc, GLenum mode);
static GLboolean validate_count(__GLXcontext *gc, GLsizei count);
static GLboolean validate_type(__GLXcontext *gc, GLenum type);
/**
* Table of sizes, in bytes, of a GL types. All of the type enums are be in
* the range 0x1400 - 0x140F. That includes types added by extensions (i.e.,
* \c GL_HALF_FLOAT_NV). This elements of this table correspond to the
* type enums masked with 0x0f.
*
* \notes
* \c GL_HALF_FLOAT_NV is not included. Neither are \c GL_2_BYTES,
* \c GL_3_BYTES, or \c GL_4_BYTES.
*/
const GLuint __glXTypeSize_table[16] = {
1, 1, 2, 2, 4, 4, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0
};
/**
* Initialize vertex array state of a GLX context.
*
* \param gc GLX context whose vertex array state is to be initialized.
*
* \warning
* This function may only be called after __GLXcontext::gl_extension_bits,
* __GLXcontext::server_minor, and __GLXcontext::server_major have been
* initialized. These values are used to determine what vertex arrays are
* supported.
*
* \bug
* Return values from malloc are not properly tested.
*/
void
__glXInitVertexArrayState( __GLXcontext * gc )
{
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays;
unsigned array_count;
unsigned texture_units = 1;
unsigned i;
unsigned j;
unsigned vertex_program_attribs = 0;
GLboolean got_fog = GL_FALSE;
GLboolean got_secondary_color = GL_FALSE;
arrays = malloc( sizeof( struct array_state_vector ) );
state->array_state = arrays;
arrays->enabled_array_count = 0;
arrays->array_info_cache = NULL;
arrays->array_info_cache_size = 0;
arrays->array_info_cache_buffer_size = 0;
arrays->array_info_cache_valid= GL_FALSE;
arrays->old_DrawArrays_possible = !state->NoDrawArraysProtocol;
arrays->new_DrawArrays_possible = GL_FALSE;
arrays->DrawArrays = NULL;
arrays->active_texture_unit = 0;
/* Determine how many arrays are actually needed. Only arrays that
* are supported by the server are create. For example, if the server
* supports only 2 texture units, then only 2 texture coordinate arrays
* are created.
*
* At the very least, GL_VERTEX_ARRAY, GL_NORMAL_ARRAY,
* GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY, and
* GL_EDGE_FLAG_ARRAY are supported.
*/
array_count = 5;
if ( __glExtensionBitIsEnabled( gc, GL_EXT_fog_coord_bit )
|| (gc->server_major > 1) || (gc->server_minor >= 4) ) {
got_fog = GL_TRUE;
array_count++;
}
if ( __glExtensionBitIsEnabled( gc, GL_EXT_secondary_color_bit )
|| (gc->server_major > 1) || (gc->server_minor >= 4) ) {
got_secondary_color = GL_TRUE;
array_count++;
}
if ( __glExtensionBitIsEnabled( gc, GL_ARB_multitexture_bit )
|| (gc->server_major > 1) || (gc->server_minor >= 3) ) {
__indirect_glGetIntegerv( GL_MAX_TEXTURE_UNITS, & texture_units );
}
if ( __glExtensionBitIsEnabled( gc, GL_ARB_vertex_program_bit ) ) {
__indirect_glGetProgramivARB( GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ATTRIBS_ARB,
& vertex_program_attribs );
}
arrays->num_texture_units = texture_units;
arrays->num_vertex_program_attribs = vertex_program_attribs;
array_count += texture_units + vertex_program_attribs;
arrays->num_arrays = array_count;
arrays->arrays = malloc( sizeof( struct array_state ) * array_count );
(void) memset( arrays->arrays, 0,
sizeof( struct array_state ) * array_count );
arrays->arrays[0].data_type = GL_FLOAT;
arrays->arrays[0].count = 3;
arrays->arrays[0].key = GL_NORMAL_ARRAY;
arrays->arrays[0].normalized = GL_TRUE;
arrays->arrays[0].old_DrawArrays_possible = GL_TRUE;
arrays->arrays[1].data_type = GL_FLOAT;
arrays->arrays[1].count = 4;
arrays->arrays[1].key = GL_COLOR_ARRAY;
arrays->arrays[1].normalized = GL_TRUE;
arrays->arrays[1].old_DrawArrays_possible = GL_TRUE;
arrays->arrays[2].data_type = GL_FLOAT;
arrays->arrays[2].count = 1;
arrays->arrays[2].key = GL_INDEX_ARRAY;
arrays->arrays[2].old_DrawArrays_possible = GL_TRUE;
arrays->arrays[3].data_type = GL_UNSIGNED_BYTE;
arrays->arrays[3].count = 1;
arrays->arrays[3].key = GL_EDGE_FLAG_ARRAY;
arrays->arrays[3].old_DrawArrays_possible = GL_TRUE;
for ( i = 0 ; i < texture_units ; i++ ) {
arrays->arrays[4 + i].data_type = GL_FLOAT;
arrays->arrays[4 + i].count = 4;
arrays->arrays[4 + i].key = GL_TEXTURE_COORD_ARRAY;
arrays->arrays[4 + i].old_DrawArrays_possible = (i == 0);
arrays->arrays[4 + i].index = i;
arrays->arrays[4 + i].header[1] = i + GL_TEXTURE0;
}
i = 4 + texture_units;
if ( got_fog ) {
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 1;
arrays->arrays[i].key = GL_FOG_COORDINATE_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
i++;
}
if ( got_secondary_color ) {
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 3;
arrays->arrays[i].key = GL_SECONDARY_COLOR_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
arrays->arrays[i].normalized = GL_TRUE;
i++;
}
for ( j = 0 ; j < vertex_program_attribs ; j++ ) {
const unsigned idx = (vertex_program_attribs - (j + 1));
arrays->arrays[idx + i].data_type = GL_FLOAT;
arrays->arrays[idx + i].count = 4;
arrays->arrays[idx + i].key = GL_VERTEX_ATTRIB_ARRAY_POINTER;
arrays->arrays[idx + i].old_DrawArrays_possible = 0;
arrays->arrays[idx + i].index = idx;
arrays->arrays[idx + i].header[1] = idx;
}
i += vertex_program_attribs;
/* Vertex array *must* be last becuase of the way that
* emit_DrawArrays_none works.
*/
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 4;
arrays->arrays[i].key = GL_VERTEX_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
arrays->stack_index = 0;
arrays->stack = malloc( sizeof( struct array_stack_state )
* arrays->num_arrays );
}
/**
* Calculate the size of a single vertex for the "none" protocol. This is
* essentially the size of all the immediate-mode commands required to
* implement the enabled vertex arrays.
*/
static size_t
calculate_single_vertex_size_none( const struct array_state_vector * arrays )
{
size_t single_vertex_size = 0;
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
single_vertex_size += ((uint16_t *)arrays->arrays[i].header)[0];
}
}
return single_vertex_size;
}
/**
* Emit a single element using non-DrawArrays protocol.
*/
GLubyte *
emit_element_none( GLubyte * dst,
const struct array_state_vector * arrays,
unsigned index )
{
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
const size_t offset = index * arrays->arrays[i].true_stride;
/* The generic attributes can have more data than is in the
* elements. This is because a vertex array can be a 2 element,
* normalized, unsigned short, but the "closest" immediate mode
* protocol is for a 4Nus. Since the sizes are small, the
* performance impact on modern processors should be negligible.
*/
(void) memset( dst, 0,
((uint16_t *)arrays->arrays[i].header)[0] );
(void) memcpy( dst, arrays->arrays[i].header,
arrays->arrays[i].header_size );
dst += arrays->arrays[i].header_size;
(void) memcpy( dst, ((GLubyte *) arrays->arrays[i].data) + offset,
arrays->arrays[i].element_size );
dst += __GLX_PAD( arrays->arrays[i].element_size );
}
}
return dst;
}
/**
* Emit a single element using "old" DrawArrays protocol from
* EXT_vertex_arrays / OpenGL 1.1.
*/
GLubyte *
emit_element_old( GLubyte * dst,
const struct array_state_vector * arrays,
unsigned index )
{
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
const size_t offset = index * arrays->arrays[i].true_stride;
(void) memcpy( dst, ((GLubyte *) arrays->arrays[i].data) + offset,
arrays->arrays[i].element_size );
dst += __GLX_PAD( arrays->arrays[i].element_size );
}
}
return dst;
}
struct array_state *
get_array_entry( const struct array_state_vector * arrays,
GLenum key, unsigned index )
{
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( (arrays->arrays[i].key == key)
&& (arrays->arrays[i].index == index) ) {
return & arrays->arrays[i];
}
}
return NULL;
}
static GLboolean
allocate_array_info_cache( struct array_state_vector * arrays,
size_t required_size )
{
if ( arrays->array_info_cache_buffer_size < required_size ) {
GLubyte * temp = realloc( arrays->array_info_cache, required_size + 20 );
if ( temp == NULL ) {
return GL_FALSE;
}
arrays->large_header = temp;
arrays->array_info_cache = temp + 20;
arrays->array_info_cache_buffer_size = required_size;
}
arrays->array_info_cache_size = required_size;
return GL_TRUE;
}
/**
*/
void
fill_array_info_cache( struct array_state_vector * arrays )
{
GLboolean old_DrawArrays_possible;
unsigned i;
/* Determine how many arrays are enabled.
*/
arrays->enabled_array_count = 0;
old_DrawArrays_possible = arrays->old_DrawArrays_possible;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
arrays->enabled_array_count++;
old_DrawArrays_possible &= arrays->arrays[i].old_DrawArrays_possible;
}
}
if ( arrays->new_DrawArrays_possible ) {
assert( ! arrays->new_DrawArrays_possible );
}
else if ( old_DrawArrays_possible ) {
const size_t required_size = arrays->enabled_array_count * 12;
uint32_t * info;
if ( ! allocate_array_info_cache( arrays, required_size ) ) {
return;
}
info = (uint32_t *) arrays->array_info_cache;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
*(info++) = arrays->arrays[i].data_type;
*(info++) = arrays->arrays[i].count;
*(info++) = arrays->arrays[i].key;
}
}
arrays->array_info_cache_valid = GL_TRUE;
arrays->DrawArrays = emit_DrawArrays_old;
arrays->DrawElements = emit_DrawElements_old;
}
else {
arrays->DrawArrays = emit_DrawArrays_none;
arrays->DrawElements = emit_DrawElements_none;
}
}
/**
* Emit a \c glDrawArrays command using the "none" protocol. That is,
* emit immediate-mode commands that are equivalent to the requiested
* \c glDrawArrays command. This is used with servers that don't support
* the OpenGL 1.1 / EXT_vertex_arrays DrawArrays protocol or in cases where
* vertex state is enabled that is not compatible with that protocol.
*/
void
emit_DrawArrays_none( GLenum mode, GLint first, GLsizei count )
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
size_t single_vertex_size;
GLubyte * pc;
unsigned i;
static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin };
static const uint16_t end_cmd[2] = { 4, X_GLrop_End };
single_vertex_size = calculate_single_vertex_size_none( arrays );
pc = gc->pc;
(void) memcpy( pc, begin_cmd, 4 );
*(int *)(pc + 4) = mode;
pc += 8;
for ( i = 0 ; i < count ; i++ ) {
if ( (pc + single_vertex_size) >= gc->bufEnd ) {
pc = __glXFlushRenderBuffer(gc, gc->pc);
}
pc = emit_element_none( pc, arrays, first + i );
}
if ( (pc + 4) >= gc->bufEnd ) {
pc = __glXFlushRenderBuffer(gc, gc->pc);
}
(void) memcpy( pc, end_cmd, 4 );
pc += 4;
gc->pc = pc;
if ( gc->pc > gc->limit ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
/**
* Emit the header data for the GL 1.1 / EXT_vertex_arrays DrawArrays
* protocol.
*
* \param gc GLX context.
* \param arrays Array state.
* \param elements_per_request Location to store the number of elements that
* can fit in a single Render / RenderLarge
* command.
* \param total_request Total number of requests for a RenderLarge
* command. If a Render command is used, this
* will be zero.
* \param mode Drawing mode.
* \param count Number of vertices.
*
* \returns
* A pointer to the buffer for array data.
*/
static GLubyte *
emit_DrawArrays_header_old( __GLXcontext * gc,
struct array_state_vector * arrays,
size_t * elements_per_request,
size_t * total_requests,
GLenum mode, GLsizei count )
{
size_t command_size;
size_t single_vertex_size;
const unsigned header_size = 16;
unsigned i;
GLubyte * pc;
/* Determine the size of the whole command. This includes the header,
* the ARRAY_INFO data and the array data. Once this size is calculated,
* it will be known whether a Render or RenderLarge command is needed.
*/
single_vertex_size = 0;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
if ( arrays->arrays[i].enabled ) {
single_vertex_size += __GLX_PAD( arrays->arrays[i].element_size );
}
}
command_size = arrays->array_info_cache_size + header_size
+ (single_vertex_size * count);
/* Write the header for either a Render command or a RenderLarge
* command. After the header is written, write the ARRAY_INFO data.
*/
if ( command_size > gc->maxSmallRenderCommandSize ) {
/* maxSize is the maximum amount of data can be stuffed into a single
* packet. sz_xGLXRenderReq is added because bufSize is the maximum
* packet size minus sz_xGLXRenderReq.
*/
const size_t maxSize = (gc->bufSize + sz_xGLXRenderReq)
- sz_xGLXRenderLargeReq;
unsigned vertex_requests;
/* Calculate the number of data packets that will be required to send
* the whole command. To do this, the number of verticies that
* will fit in a single buffer must be calculated.
*
* The important value here is elements_per_request. This is the
* number of complete array elements that will fit in a single
* buffer. There may be some wasted space at the end of the buffer,
* but splitting elements across buffer boundries would be painful.
*/
elements_per_request[0] = maxSize / single_vertex_size;
vertex_requests = (count + elements_per_request[0] - 1)
/ elements_per_request[0];
*total_requests = vertex_requests + 1;
__glXFlushRenderBuffer(gc, gc->pc);
command_size += 4;
pc = arrays->large_header;
*(uint32_t *)(pc + 0) = command_size;
*(uint32_t *)(pc + 4) = X_GLrop_DrawArrays;
*(uint32_t *)(pc + 8) = count;
*(uint32_t *)(pc + 12) = arrays->enabled_array_count;
*(uint32_t *)(pc + 16) = mode;
__glXSendLargeChunk( gc, 1, *total_requests, pc,
header_size + 4 + arrays->array_info_cache_size );
pc = gc->pc;
}
else {
if ( (gc->pc + command_size) >= gc->bufEnd ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
pc = gc->pc;
*(uint16_t *)(pc + 0) = command_size;
*(uint16_t *)(pc + 2) = X_GLrop_DrawArrays;
*(uint32_t *)(pc + 4) = count;
*(uint32_t *)(pc + 8) = arrays->enabled_array_count;
*(uint32_t *)(pc + 12) = mode;
pc += header_size;
(void) memcpy( pc, arrays->array_info_cache,
arrays->array_info_cache_size );
pc += arrays->array_info_cache_size;
*elements_per_request = count;
*total_requests = 0;
}
return pc;
}
/**
*/
void
emit_DrawArrays_old( GLenum mode, GLint first, GLsizei count )
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
GLubyte * pc;
size_t elements_per_request;
unsigned total_requests = 0;
unsigned i;
size_t total_sent = 0;
pc = emit_DrawArrays_header_old( gc, arrays, & elements_per_request,
& total_requests, mode, count);
/* Write the arrays.
*/
if ( total_requests == 0 ) {
assert( elements_per_request >= count );
for ( i = 0 ; i < count ; i++ ) {
pc = emit_element_old( pc, arrays, i + first );
}
assert( pc <= gc->bufEnd );
gc->pc = pc;
if ( gc->pc > gc->limit ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
else {
unsigned req;
for ( req = 2 ; req <= total_requests ; req++ ) {
if ( count < elements_per_request ) {
elements_per_request = count;
}
pc = gc->pc;
for ( i = 0 ; i < elements_per_request ; i++ ) {
pc = emit_element_old( pc, arrays, i + first );
}
first += elements_per_request;
total_sent += (size_t) (pc - gc->pc);
__glXSendLargeChunk( gc, req, total_requests, gc->pc,
pc - gc->pc );
count -= elements_per_request;
}
}
}
void
emit_DrawElements_none( GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices )
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin };
static const uint16_t end_cmd[2] = { 4, X_GLrop_End };
GLubyte * pc;
size_t single_vertex_size;
unsigned i;
single_vertex_size = calculate_single_vertex_size_none( arrays );
if ( (gc->pc + single_vertex_size) >= gc->bufEnd ) {
gc->pc = __glXFlushRenderBuffer(gc, gc->pc);
}
pc = gc->pc;
(void) memcpy( pc, begin_cmd, 4 );
*(int *)(pc + 4) = mode;
pc += 8;
for ( i = 0 ; i < count ; i++ ) {
unsigned index = 0;
if ( (pc + single_vertex_size) >= gc->bufEnd ) {
pc = __glXFlushRenderBuffer(gc, gc->pc);
}
switch( type ) {
case GL_UNSIGNED_INT:
index = (unsigned) (((GLuint *) indices)[i]);
break;
case GL_UNSIGNED_SHORT:
index = (unsigned) (((GLushort *) indices)[i]);
break;
case GL_UNSIGNED_BYTE:
index = (unsigned) (((GLubyte *) indices)[i]);
break;
}
pc = emit_element_none( pc, arrays, index );
}
if ( (pc + 4) >= gc->bufEnd ) {
pc = __glXFlushRenderBuffer(gc, gc->pc);
}
(void) memcpy( pc, end_cmd, 4 );
pc += 4;
gc->pc = pc;
if ( gc->pc > gc->limit ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
/**
*/
void
emit_DrawElements_old( GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices )
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
GLubyte * pc;
size_t elements_per_request;
unsigned total_requests = 0;
unsigned i;
unsigned req;
const GLuint * ui_ptr = (const GLuint *) indices;
const GLushort * us_ptr = (const GLushort *) indices;
const GLubyte * ub_ptr = (const GLubyte *) indices;
pc = emit_DrawArrays_header_old( gc, arrays, & elements_per_request,
& total_requests, mode, count);
/* Write the arrays.
*/
req = 2;
while ( count > 0 ) {
if ( count < elements_per_request ) {
elements_per_request = count;
}
switch( type ) {
case GL_UNSIGNED_INT:
for ( i = 0 ; i < elements_per_request ; i++ ) {
const GLint index = (GLint) *(ui_ptr++);
pc = emit_element_old( pc, arrays, index );
}
break;
case GL_UNSIGNED_SHORT:
for ( i = 0 ; i < elements_per_request ; i++ ) {
const GLint index = (GLint) *(us_ptr++);
pc = emit_element_old( pc, arrays, index );
}
break;
case GL_UNSIGNED_BYTE:
for ( i = 0 ; i < elements_per_request ; i++ ) {
const GLint index = (GLint) *(ub_ptr++);
pc = emit_element_old( pc, arrays, index );
}
break;
}
if ( total_requests != 0 ) {
__glXSendLargeChunk( gc, req, total_requests, gc->pc,
pc - gc->pc );
pc = gc->pc;
req++;
}
count -= elements_per_request;
}
assert( (total_requests == 0) || ((req - 1) == total_requests) );
if ( total_requests == 0 ) {
assert( pc <= gc->bufEnd );
gc->pc = pc;
if ( gc->pc > gc->limit ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
}
/**
* Validate that the \c mode parameter to \c glDrawArrays, et. al. is valid.
* If it is not valid, then an error code is set in the GLX context.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if is not.
*/
static GLboolean
validate_mode(__GLXcontext *gc, GLenum mode)
{
switch(mode) {
case GL_POINTS:
case GL_LINE_STRIP:
case GL_LINE_LOOP:
case GL_LINES:
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
case GL_TRIANGLES:
case GL_QUAD_STRIP:
case GL_QUADS:
case GL_POLYGON:
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return GL_FALSE;
}
return GL_TRUE;
}
/**
* Validate that the \c count parameter to \c glDrawArrays, et. al. is valid.
* A value less than zero is invalid and will result in \c GL_INVALID_VALUE
* being set. A value of zero will not result in an error being set, but
* will result in \c GL_FALSE being returned.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not.
*/
static GLboolean
validate_count(__GLXcontext *gc, GLsizei count)
{
if (count < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
}
return (count > 0);
}
/**
* Validate that the \c type parameter to \c glDrawElements, et. al. is
* valid. Only \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, and
* \c GL_UNSIGNED_INT are valid.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not.
*/
static GLboolean validate_type(__GLXcontext *gc, GLenum type)
{
switch( type ) {
case GL_UNSIGNED_INT:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_BYTE:
return GL_TRUE;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return GL_FALSE;
}
}
void __indirect_glDrawArrays(GLenum mode, GLint first, GLsizei count)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
if ( validate_mode(gc, mode) && validate_count(gc, count) ) {
if ( ! arrays->array_info_cache_valid ) {
fill_array_info_cache( arrays );
}
arrays->DrawArrays(mode, first, count);
}
}
void __indirect_glArrayElement(GLint index)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
size_t single_vertex_size;
single_vertex_size = calculate_single_vertex_size_none( arrays );
if ( (gc->pc + single_vertex_size) >= gc->bufEnd ) {
gc->pc = __glXFlushRenderBuffer(gc, gc->pc);
}
gc->pc = emit_element_none( gc->pc, arrays, index );
if ( gc->pc > gc->limit ) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
void __indirect_glDrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
if ( validate_mode(gc, mode) && validate_count(gc, count)
&& validate_type(gc, type) ) {
if ( ! arrays->array_info_cache_valid ) {
fill_array_info_cache( arrays );
}
arrays->DrawElements(mode, count, type, indices);
}
}
void __indirect_glDrawRangeElements(GLenum mode, GLuint start, GLuint end,
GLsizei count, GLenum type,
const GLvoid *indices)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
if ( validate_mode(gc, mode) && validate_count(gc, count)
&& validate_type(gc, type) ) {
if (end < start) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
if ( ! arrays->array_info_cache_valid ) {
fill_array_info_cache( arrays );
}
arrays->DrawElements(mode, count, type, indices);
}
}
void __indirect_glMultiDrawArraysEXT(GLenum mode, GLint *first, GLsizei *count,
GLsizei primcount)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
GLsizei i;
if ( validate_mode(gc, mode) ) {
if ( ! arrays->array_info_cache_valid ) {
fill_array_info_cache( arrays );
}
for ( i = 0 ; i < primcount ; i++ ) {
if ( validate_count( gc, count[i] ) ) {
arrays->DrawArrays(mode, first[i], count[i]);
}
}
}
}
void __indirect_glMultiDrawElementsEXT(GLenum mode, const GLsizei *count,
GLenum type, const GLvoid ** indices,
GLsizei primcount)
{
__GLXcontext *gc = __glXGetCurrentContext();
const __GLXattribute * state =
(const __GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
GLsizei i;
if ( validate_mode(gc, mode) && validate_type(gc, type) ) {
if ( ! arrays->array_info_cache_valid ) {
fill_array_info_cache( arrays );
}
for ( i = 0 ; i < primcount ; i++ ) {
if ( validate_count( gc, count[i] ) ) {
arrays->DrawElements(mode, count[i], type, indices[i]);
}
}
}
}
#define COMMON_ARRAY_DATA_INIT(a, PTR, TYPE, STRIDE, COUNT, HDR_SIZE, OPCODE) \
do { \
(a)->data = PTR; \
(a)->data_type = TYPE; \
(a)->user_stride = STRIDE; \
(a)->count = COUNT; \
\
(a)->element_size = __glXTypeSize( TYPE ) * COUNT; \
(a)->true_stride = (STRIDE == 0) \
? (a)->element_size : STRIDE; \
\
(a)->header_size = HDR_SIZE; \
((uint16_t *) (a)->header)[0] = __GLX_PAD((a)->header_size + (a)->element_size); \
((uint16_t *) (a)->header)[1] = OPCODE; \
} while(0)
void __indirect_glVertexPointer( GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer )
{
static const uint16_t short_ops[5] = {
0, 0, X_GLrop_Vertex2sv, X_GLrop_Vertex3sv, X_GLrop_Vertex4sv
};
static const uint16_t int_ops[5] = {
0, 0, X_GLrop_Vertex2iv, X_GLrop_Vertex3iv, X_GLrop_Vertex4iv
};
static const uint16_t float_ops[5] = {
0, 0, X_GLrop_Vertex2fv, X_GLrop_Vertex3fv, X_GLrop_Vertex4fv
};
static const uint16_t double_ops[5] = {
0, 0, X_GLrop_Vertex2dv, X_GLrop_Vertex3dv, X_GLrop_Vertex4dv
};
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (size < 2 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_SHORT: opcode = short_ops[size]; break;
case GL_INT: opcode = int_ops[size]; break;
case GL_FLOAT: opcode = float_ops[size]; break;
case GL_DOUBLE: opcode = double_ops[size]; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_VERTEX_ARRAY, 0 );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, size, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glNormalPointer( GLenum type, GLsizei stride,
const GLvoid * pointer )
{
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_BYTE: opcode = X_GLrop_Normal3bv; break;
case GL_SHORT: opcode = X_GLrop_Normal3sv; break;
case GL_INT: opcode = X_GLrop_Normal3iv; break;
case GL_FLOAT: opcode = X_GLrop_Normal3fv; break;
case GL_DOUBLE: opcode = X_GLrop_Normal3dv; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_NORMAL_ARRAY, 0 );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, 3, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glColorPointer( GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer )
{
static const uint16_t byte_ops[5] = {
0, 0, 0, X_GLrop_Color3bv, X_GLrop_Color4bv
};
static const uint16_t ubyte_ops[5] = {
0, 0, 0, X_GLrop_Color3ubv, X_GLrop_Color4ubv
};
static const uint16_t short_ops[5] = {
0, 0, 0, X_GLrop_Color3sv, X_GLrop_Color4sv
};
static const uint16_t ushort_ops[5] = {
0, 0, 0, X_GLrop_Color3usv, X_GLrop_Color4usv
};
static const uint16_t int_ops[5] = {
0, 0, 0, X_GLrop_Color3iv, X_GLrop_Color4iv
};
static const uint16_t uint_ops[5] = {
0, 0, 0, X_GLrop_Color3uiv, X_GLrop_Color4uiv
};
static const uint16_t float_ops[5] = {
0, 0, 0, X_GLrop_Color3fv, X_GLrop_Color4fv
};
static const uint16_t double_ops[5] = {
0, 0, 0, X_GLrop_Color3dv, X_GLrop_Color4dv
};
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (size < 3 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_BYTE: opcode = byte_ops[size]; break;
case GL_UNSIGNED_BYTE: opcode = ubyte_ops[size]; break;
case GL_SHORT: opcode = short_ops[size]; break;
case GL_UNSIGNED_SHORT: opcode = ushort_ops[size]; break;
case GL_INT: opcode = int_ops[size]; break;
case GL_UNSIGNED_INT: opcode = uint_ops[size]; break;
case GL_FLOAT: opcode = float_ops[size]; break;
case GL_DOUBLE: opcode = double_ops[size]; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_COLOR_ARRAY, 0 );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, size, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glIndexPointer( GLenum type, GLsizei stride,
const GLvoid * pointer )
{
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_UNSIGNED_BYTE: opcode = X_GLrop_Indexubv; break;
case GL_SHORT: opcode = X_GLrop_Indexsv; break;
case GL_INT: opcode = X_GLrop_Indexiv; break;
case GL_FLOAT: opcode = X_GLrop_Indexfv; break;
case GL_DOUBLE: opcode = X_GLrop_Indexdv; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_INDEX_ARRAY, 0 );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, 1, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glEdgeFlagPointer( GLsizei stride, const GLvoid * pointer )
{
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
a = get_array_entry( arrays, GL_EDGE_FLAG_ARRAY, 0 );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, GL_UNSIGNED_BYTE, stride, 1, 4, X_GLrop_EdgeFlagv );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glTexCoordPointer( GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer )
{
static const uint16_t short_ops[5] = {
0, X_GLrop_TexCoord1sv, X_GLrop_TexCoord2sv, X_GLrop_TexCoord3sv, X_GLrop_TexCoord4sv
};
static const uint16_t int_ops[5] = {
0, X_GLrop_TexCoord1iv, X_GLrop_TexCoord2iv, X_GLrop_TexCoord3iv, X_GLrop_TexCoord4iv
};
static const uint16_t float_ops[5] = {
0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2fv, X_GLrop_TexCoord3fv, X_GLrop_TexCoord4fv
};
static const uint16_t double_ops[5] = {
0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2dv, X_GLrop_TexCoord3dv, X_GLrop_TexCoord4dv
};
static const uint16_t mshort_ops[5] = {
0, X_GLrop_MultiTexCoord1svARB, X_GLrop_MultiTexCoord2svARB, X_GLrop_MultiTexCoord3svARB, X_GLrop_MultiTexCoord4svARB
};
static const uint16_t mint_ops[5] = {
0, X_GLrop_MultiTexCoord1ivARB, X_GLrop_MultiTexCoord2ivARB, X_GLrop_MultiTexCoord3ivARB, X_GLrop_MultiTexCoord4ivARB
};
static const uint16_t mfloat_ops[5] = {
0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2fvARB, X_GLrop_MultiTexCoord3fvARB, X_GLrop_MultiTexCoord4fvARB
};
static const uint16_t mdouble_ops[5] = {
0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2dvARB, X_GLrop_MultiTexCoord3dvARB, X_GLrop_MultiTexCoord4dvARB
};
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
unsigned header_size;
unsigned index;
if (size < 1 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
index = arrays->active_texture_unit;
if ( index == 0 ) {
switch ( type ) {
case GL_SHORT: opcode = short_ops[size]; break;
case GL_INT: opcode = int_ops[size]; break;
case GL_FLOAT: opcode = float_ops[size]; break;
case GL_DOUBLE: opcode = double_ops[size]; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
header_size = 4;
}
else {
switch ( type ) {
case GL_SHORT: opcode = mshort_ops[size]; break;
case GL_INT: opcode = mint_ops[size]; break;
case GL_FLOAT: opcode = mfloat_ops[size]; break;
case GL_DOUBLE: opcode = mdouble_ops[size]; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
header_size = 8;
}
a = get_array_entry( arrays, GL_TEXTURE_COORD_ARRAY, index );
assert( a != NULL );
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, size, header_size, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glSecondaryColorPointerEXT( GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer )
{
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (size != 3 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_BYTE: opcode = 4126; break;
case GL_UNSIGNED_BYTE: opcode = 4131; break;
case GL_SHORT: opcode = 4127; break;
case GL_UNSIGNED_SHORT: opcode = 4132; break;
case GL_INT: opcode = 4128; break;
case GL_UNSIGNED_INT: opcode = 4133; break;
case GL_FLOAT: opcode = 4129; break;
case GL_DOUBLE: opcode = 4130; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_SECONDARY_COLOR_ARRAY, 0 );
if ( a == NULL ) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, size, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glFogCoordPointerEXT( GLenum type, GLsizei stride,
const GLvoid * pointer )
{
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
switch ( type ) {
case GL_FLOAT: opcode = 4124; break;
case GL_DOUBLE: opcode = 4125; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
a = get_array_entry( arrays, GL_FOG_COORD_ARRAY, 0 );
if ( a == NULL ) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, 1, 4, opcode );
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
void __indirect_glVertexAttribPointerARB(GLuint index, GLint size,
GLenum type, GLboolean normalized,
GLsizei stride,
const GLvoid * pointer)
{
static const uint16_t short_ops[5] = { 0, 4189, 4190, 4191, 4192 };
static const uint16_t float_ops[5] = { 0, 4193, 4194, 4195, 4196 };
static const uint16_t double_ops[5] = { 0, 4197, 4198, 4199, 4200 };
uint16_t opcode;
__GLXcontext *gc = __glXGetCurrentContext();
__GLXattribute * state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
unsigned true_immediate_count;
unsigned true_immediate_size;
if ( (size < 1) || (size > 4) || (stride < 0)
|| (index > arrays->num_vertex_program_attribs) ){
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
if ( normalized && (type != GL_FLOAT) && (type != GL_DOUBLE)) {
switch( type ) {
case GL_BYTE: opcode = X_GLrop_VertexAttrib4NbvARB; break;
case GL_UNSIGNED_BYTE: opcode = X_GLrop_VertexAttrib4NubvARB; break;
case GL_SHORT: opcode = X_GLrop_VertexAttrib4NsvARB; break;
case GL_UNSIGNED_SHORT: opcode = X_GLrop_VertexAttrib4NusvARB; break;
case GL_INT: opcode = X_GLrop_VertexAttrib4NivARB; break;
case GL_UNSIGNED_INT: opcode = X_GLrop_VertexAttrib4NuivARB; break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
true_immediate_count = 4;
}
else {
true_immediate_count = size;
switch( type ) {
case GL_BYTE:
opcode = X_GLrop_VertexAttrib4bvARB;
true_immediate_count = 4;
break;
case GL_UNSIGNED_BYTE:
opcode = X_GLrop_VertexAttrib4ubvARB;
true_immediate_count = 4;
break;
case GL_SHORT:
opcode = short_ops[size];
break;
case GL_UNSIGNED_SHORT:
opcode = X_GLrop_VertexAttrib4usvARB;
true_immediate_count = 4;
break;
case GL_INT:
opcode = X_GLrop_VertexAttrib4ivARB;
true_immediate_count = 4;
break;
case GL_UNSIGNED_INT:
opcode = X_GLrop_VertexAttrib4uivARB;
true_immediate_count = 4;
break;
case GL_FLOAT:
opcode = float_ops[size];
break;
case GL_DOUBLE:
opcode = double_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
}
a = get_array_entry( arrays, GL_VERTEX_ATTRIB_ARRAY_POINTER, index );
if ( a == NULL ) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
COMMON_ARRAY_DATA_INIT( a, pointer, type, stride, size, 8, opcode );
true_immediate_size = __glXTypeSize(type) * true_immediate_count;
((uint16_t *) (a)->header)[0] = __GLX_PAD(a->header_size
+ true_immediate_size);
if ( a->enabled ) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
/**
* I don't have 100% confidence that this is correct. The different rules
* about whether or not generic vertex attributes alias "classic" vertex
* attributes (i.e., attrib1 ?= primary color) between ARB_vertex_program,
* ARB_vertex_shader, and NV_vertex_program are a bit confusing. My
* feeling is that the client-side doesn't have to worry about it. The
* client just sends all the data to the server and lets the server deal
* with it.
*/
void __indirect_glVertexAttribPointerNV( GLuint index, GLint size,
GLenum type, GLsizei stride,
const GLvoid * pointer)
{
__GLXcontext *gc = __glXGetCurrentContext();
GLboolean normalized = GL_FALSE;
switch( type ) {
case GL_UNSIGNED_BYTE:
if ( size != 4 ) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
normalized = GL_TRUE;
case GL_SHORT:
case GL_FLOAT:
case GL_DOUBLE:
__indirect_glVertexAttribPointerARB(index, size, type,
normalized,
stride, pointer);
return;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
}
void __indirect_glClientActiveTextureARB(GLenum texture)
{
__GLXcontext * const gc = __glXGetCurrentContext();
__GLXattribute * const state = (__GLXattribute *)(gc->client_state_private);
struct array_state_vector * const arrays = state->array_state;
const GLint unit = (GLint) texture - GL_TEXTURE0;
if ( (unit < 0) || (unit > arrays->num_texture_units) ) {
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
arrays->active_texture_unit = unit;
}
/**
*/
GLboolean
__glXSetArrayEnable( __GLXattribute * state,
GLenum key, unsigned index, GLboolean enable )
{
struct array_state_vector * arrays = state->array_state;
struct array_state * a;
if ( key == GL_TEXTURE_COORD_ARRAY ) {
index = arrays->active_texture_unit;
}
a = get_array_entry( arrays, key, index );
if ( (a != NULL) && (a->enabled != enable) ) {
a->enabled = enable;
arrays->array_info_cache_valid = GL_FALSE;
}
return (a != NULL);
}
void
__glXArrayDisableAll( __GLXattribute * state )
{
struct array_state_vector * arrays = state->array_state;
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
arrays->arrays[i].enabled = GL_FALSE;
}
arrays->array_info_cache_valid = GL_FALSE;
}
/**
*/
GLboolean
__glXGetArrayEnable( const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (GLintptr) a->enabled;
}
return (a != NULL);
}
/**
*/
GLboolean
__glXGetArrayType( const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (GLintptr) a->enabled;
}
return (a != NULL);
}
/**
*/
GLboolean
__glXGetArraySize( const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (GLintptr) a->count;
}
return (a != NULL);
}
/**
*/
GLboolean
__glXGetArrayStride( const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (GLintptr) a->user_stride;
}
return (a != NULL);
}
/**
*/
GLboolean
__glXGetArrayPointer( const __GLXattribute * const state,
GLenum key, unsigned index, void ** dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (void *) (a->data);
}
return (a != NULL);
}
/**
*/
GLboolean
__glXGetArrayNormalized( const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest )
{
const struct array_state_vector * arrays = state->array_state;
const struct array_state * a = get_array_entry( (struct array_state_vector *) arrays,
key, index );
if ( a != NULL ) {
*dest = (GLintptr) a->normalized;
}
return (a != NULL);
}
/**
*/
GLuint
__glXGetActiveTextureUnit( const __GLXattribute * const state )
{
return state->array_state->active_texture_unit;
}
void
__glXPushArrayState( __GLXattribute * state )
{
struct array_state_vector * arrays = state->array_state;
struct array_stack_state * stack = & arrays->stack[ (arrays->stack_index * arrays->num_arrays)];
unsigned i;
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
stack[i].data = arrays->arrays[i].data;
stack[i].data_type = arrays->arrays[i].data_type;
stack[i].user_stride = arrays->arrays[i].user_stride;
stack[i].count = arrays->arrays[i].count;
stack[i].key = arrays->arrays[i].key;
stack[i].enabled = arrays->arrays[i].enabled;
}
arrays->active_texture_unit_stack[ arrays->stack_index ] =
arrays->active_texture_unit;
arrays->stack_index++;
}
void
__glXPopArrayState( __GLXattribute * state )
{
struct array_state_vector * arrays = state->array_state;
struct array_stack_state * stack;
unsigned i;
arrays->stack_index--;
stack = & arrays->stack[ (arrays->stack_index * arrays->num_arrays) ];
for ( i = 0 ; i < arrays->num_arrays ; i++ ) {
switch ( stack[i].key ) {
case GL_NORMAL_ARRAY:
__indirect_glNormalPointer( stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
case GL_COLOR_ARRAY:
__indirect_glColorPointer( stack[i].count,
stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
case GL_INDEX_ARRAY:
__indirect_glIndexPointer( stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
case GL_EDGE_FLAG_ARRAY:
__indirect_glEdgeFlagPointer( stack[i].user_stride,
stack[i].data );
break;
case GL_TEXTURE_COORD_ARRAY:
arrays->active_texture_unit = stack[i].index;
__indirect_glTexCoordPointer( stack[i].count,
stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
case GL_SECONDARY_COLOR_ARRAY:
__indirect_glSecondaryColorPointerEXT( stack[i].count,
stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
case GL_FOG_COORDINATE_ARRAY:
__indirect_glFogCoordPointerEXT( stack[i].data_type,
stack[i].user_stride,
stack[i].data );
break;
}
__glXSetArrayEnable( state, stack[i].key, stack[i].index,
stack[i].enabled );
}
arrays->active_texture_unit = arrays->active_texture_unit_stack[ arrays->stack_index ];
}